MATHEMATICAL MODELLING OF DIFFUSION AND REACTION IN BLOCKED ZEOLITE CATALYSTS.

Research output: Contribution to journalConference articlepeer-review

Abstract

A mathematical model for diffusion and reaction in blocked zeolites is developed which takes into account nonidealities arising from interaction between sorbed molecules as well as the effect of pore and surface blocking. The model combines a microscopic approach, in which expressions for chemical potential and diffusive fluxes are calculated within the lattice-gas framework, with the more traditional continuum approach which takes into account the effect of surface blocking. The effect of pore blocking on the diffusive fluxes is accounted for through an effective medium approximation. The effects of crystal size and blocking on the activity-selectivity characteristics of the crystal are illustrated through an example that is qualitatively similar to industrially important reactions such as alkylation of toluene in blocked ZSM-5 zeolite.

Original languageEnglish (US)
JournalAnnual Meeting - American Institute of Chemical Engineers
StatePublished - 1985

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'MATHEMATICAL MODELLING OF DIFFUSION AND REACTION IN BLOCKED ZEOLITE CATALYSTS.'. Together they form a unique fingerprint.

Cite this