TY - JOUR
T1 - Massive Access of Static and Mobile Users via Reconfigurable Intelligent Surfaces
T2 - Protocol Design and Performance Analysis
AU - Cao, Xuelin
AU - Yang, Bo
AU - Huang, Chongwen
AU - Alexandropoulos, George C.
AU - Yuen, Chau
AU - Han, Zhu
AU - Poor, H. Vincent
AU - Hanzo, Lajos
N1 - Publisher Copyright:
© 1983-2012 IEEE.
PY - 2022/4/1
Y1 - 2022/4/1
N2 - The envisioned wireless networks of the future entail the provisioning of massive numbers of connections, heterogeneous data traffic, ultra-high spectral efficiency, and low latency services. This vision is spurring research activities focused on defining a next generation multiple access (NGMA) protocol that can accommodate massive numbers of users in different resource blocks, thereby, achieving higher spectral efficiency and increased connectivity compared to conventional multiple access schemes. In this article, we present a multiple access scheme for NGMA in wireless communication systems assisted by multiple reconfigurable intelligent surfaces (RISs). In this regard, considering the practical scenario of static users operating together with mobile ones, we first study the interplay of the design of NGMA schemes and RIS phase configuration in terms of efficiency and complexity. Based on this, we then propose a multiple access framework for RIS-assisted communication systems, and we also design a medium access control (MAC) protocol incorporating RISs. In addition, we give a detailed performance analysis of the designed RIS-assisted MAC protocol. Our extensive simulation results demonstrate that the proposed MAC design outperforms the benchmarks in terms of system throughput and access fairness, and also reveal a trade-off relationship between the system throughput and fairness.
AB - The envisioned wireless networks of the future entail the provisioning of massive numbers of connections, heterogeneous data traffic, ultra-high spectral efficiency, and low latency services. This vision is spurring research activities focused on defining a next generation multiple access (NGMA) protocol that can accommodate massive numbers of users in different resource blocks, thereby, achieving higher spectral efficiency and increased connectivity compared to conventional multiple access schemes. In this article, we present a multiple access scheme for NGMA in wireless communication systems assisted by multiple reconfigurable intelligent surfaces (RISs). In this regard, considering the practical scenario of static users operating together with mobile ones, we first study the interplay of the design of NGMA schemes and RIS phase configuration in terms of efficiency and complexity. Based on this, we then propose a multiple access framework for RIS-assisted communication systems, and we also design a medium access control (MAC) protocol incorporating RISs. In addition, we give a detailed performance analysis of the designed RIS-assisted MAC protocol. Our extensive simulation results demonstrate that the proposed MAC design outperforms the benchmarks in terms of system throughput and access fairness, and also reveal a trade-off relationship between the system throughput and fairness.
KW - MAC efficiency
KW - Next generation multiple access
KW - access fairness
KW - reconfigurable intelligent surfaces
UR - http://www.scopus.com/inward/record.url?scp=85123724316&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85123724316&partnerID=8YFLogxK
U2 - 10.1109/JSAC.2022.3145908
DO - 10.1109/JSAC.2022.3145908
M3 - Article
AN - SCOPUS:85123724316
SN - 0733-8716
VL - 40
SP - 1253
EP - 1269
JO - IEEE Journal on Selected Areas in Communications
JF - IEEE Journal on Selected Areas in Communications
IS - 4
ER -