TY - GEN
T1 - Masked Image Pretraining on Language Assisted Representation
AU - Hou, Zejiang
AU - Kung, Sun Yuan
N1 - Publisher Copyright:
© 2025 IEEE.
PY - 2025
Y1 - 2025
N2 - Self-attention based transformer models have been dominating many computer vision tasks in the past few years. Their superb model qualities heavily depend on the excessively large labeled image datasets. In order to reduce the reliance on large labeled datasets, reconstruction based masked autoencoders are gaining popularity, which learn high quality transferable representations from unlabeled images. For the same purpose, recent weakly supervised image pretraining methods explore language supervision from text captions accompanying the images. In this work, we propose Masked Image pretraining on Language Assisted representatioN, dubbed as MILAN. Instead of predicting raw pixels or low level features, our pretraining objective is to reconstruct the image features with substantial semantic signals that are obtained using caption supervision. Moreover, to accommodate our reconstruction target, we propose a more efficient prompting decoder architecture and a semantic aware mask sampling mechanism, which further advance the transfer performance of the pretrained model. Experimental results demonstrate that MILAN delivers higher accuracy than the previous works. When the masked autoencoder is pretrained and finetuned on ImageNet-1K dataset with an input resolution of 224×224, MILAN achieves a top-1 accuracy of 85.4% on ViT-Base, surpassing previous state-of-the-arts by 1%. In the downstream semantic segmentation task, MILAN achieves 52.7 mIoU using ViT-Base on ADE20K dataset, outperforming previous masked pretraining results by 4 points.
AB - Self-attention based transformer models have been dominating many computer vision tasks in the past few years. Their superb model qualities heavily depend on the excessively large labeled image datasets. In order to reduce the reliance on large labeled datasets, reconstruction based masked autoencoders are gaining popularity, which learn high quality transferable representations from unlabeled images. For the same purpose, recent weakly supervised image pretraining methods explore language supervision from text captions accompanying the images. In this work, we propose Masked Image pretraining on Language Assisted representatioN, dubbed as MILAN. Instead of predicting raw pixels or low level features, our pretraining objective is to reconstruct the image features with substantial semantic signals that are obtained using caption supervision. Moreover, to accommodate our reconstruction target, we propose a more efficient prompting decoder architecture and a semantic aware mask sampling mechanism, which further advance the transfer performance of the pretrained model. Experimental results demonstrate that MILAN delivers higher accuracy than the previous works. When the masked autoencoder is pretrained and finetuned on ImageNet-1K dataset with an input resolution of 224×224, MILAN achieves a top-1 accuracy of 85.4% on ViT-Base, surpassing previous state-of-the-arts by 1%. In the downstream semantic segmentation task, MILAN achieves 52.7 mIoU using ViT-Base on ADE20K dataset, outperforming previous masked pretraining results by 4 points.
KW - masked image pretraining
KW - vision transformer
UR - http://www.scopus.com/inward/record.url?scp=105003890457&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105003890457&partnerID=8YFLogxK
U2 - 10.1109/ICASSP49660.2025.10888259
DO - 10.1109/ICASSP49660.2025.10888259
M3 - Conference contribution
AN - SCOPUS:105003890457
T3 - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
BT - 2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025 - Proceedings
A2 - Rao, Bhaskar D
A2 - Trancoso, Isabel
A2 - Sharma, Gaurav
A2 - Mehta, Neelesh B.
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
Y2 - 6 April 2025 through 11 April 2025
ER -