Markov chain Monte Carlo with people

Adam N. Sanborn, Thomas L. Griffiths

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

Many formal models of cognition implicitly use subjective probability distributions to capture the assumptions of human learners. Most applications of these models determine these distributions indirectly. We propose a method for directly determining the assumptions of human learners by sampling from subjective probability distributions. Using a correspondence between a model of human choice and Markov chain Monte Carlo (MCMC), we describe a method for sampling from the distributions over objects that people associate with different categories. In our task, subjects choose whether to accept or reject a proposed change to an object. The task is constructed so that these decisions follow an MCMC acceptance rule, defining a Markov chain for which the stationary distribution is the category distribution. We test this procedure for both artificial categories acquired in the laboratory, and natural categories acquired from experience.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference
StatePublished - Dec 1 2009
Externally publishedYes
Event21st Annual Conference on Neural Information Processing Systems, NIPS 2007 - Vancouver, BC, Canada
Duration: Dec 3 2007Dec 6 2007

Publication series

NameAdvances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference

Other

Other21st Annual Conference on Neural Information Processing Systems, NIPS 2007
CountryCanada
CityVancouver, BC
Period12/3/0712/6/07

All Science Journal Classification (ASJC) codes

  • Information Systems

Fingerprint Dive into the research topics of 'Markov chain Monte Carlo with people'. Together they form a unique fingerprint.

Cite this