TY - JOUR
T1 - Mapping gene expression quantitative trait loci by singular value decomposition and independent component analysis
AU - Biswas, Shameek
AU - Storey, John D.
AU - Akey, Joshua M.
N1 - Funding Information:
We acknowledge the members of the Akey lab and Storey lab for helpful discussion. This research was supported in part by National Institutes of Health grant RO1 HG002913 to J.D.S and RO1 GM078105 to J.D.S and J.M.A. J.M.A is also supported by the Sloan Research Fellowship in Computational Biology.
PY - 2008/5/20
Y1 - 2008/5/20
N2 - Background: The combination of gene expression profiling with linkage analysis has become a powerful paradigm for mapping gene expression quantitative trait loci (eQTL). To date, most studies have searched for eQTL by analyzing gene expression traits one at a time. As thousands of expression traits are typically analyzed, this can reduce power because of the need to correct for the number of hypothesis tests performed. In addition, gene expression traits exhibit a complex correlation structure, which is ignored when analyzing traits individually. Results: To address these issues, we applied two different multivariate dimension reduction techniques, the Singular Value Decomposition (SVD) and Independent Component Analysis (ICA) to gene expression traits derived from a cross between two strains of Saccharomyces cerevisiae. Both methods decompose the data into a set of meta-traits, which are linear combinations of all the expression traits. The meta-traits were enriched for several Gene Ontology categories including metabolic pathways, stress response, RNA processing, ion transport, retro-transposition and telomeric maintenance. Genome-wide linkage analysis was performed on the top 20 meta-traits from both techniques. In total, 21 eQTL were found, of which 11 are novel. Interestingly, both cis and trans-linkages to the meta-traits were observed. Conclusion: These results demonstrate that dimension reduction methods are a useful and complementary approach for probing the genetic architecture of gene expression variation.
AB - Background: The combination of gene expression profiling with linkage analysis has become a powerful paradigm for mapping gene expression quantitative trait loci (eQTL). To date, most studies have searched for eQTL by analyzing gene expression traits one at a time. As thousands of expression traits are typically analyzed, this can reduce power because of the need to correct for the number of hypothesis tests performed. In addition, gene expression traits exhibit a complex correlation structure, which is ignored when analyzing traits individually. Results: To address these issues, we applied two different multivariate dimension reduction techniques, the Singular Value Decomposition (SVD) and Independent Component Analysis (ICA) to gene expression traits derived from a cross between two strains of Saccharomyces cerevisiae. Both methods decompose the data into a set of meta-traits, which are linear combinations of all the expression traits. The meta-traits were enriched for several Gene Ontology categories including metabolic pathways, stress response, RNA processing, ion transport, retro-transposition and telomeric maintenance. Genome-wide linkage analysis was performed on the top 20 meta-traits from both techniques. In total, 21 eQTL were found, of which 11 are novel. Interestingly, both cis and trans-linkages to the meta-traits were observed. Conclusion: These results demonstrate that dimension reduction methods are a useful and complementary approach for probing the genetic architecture of gene expression variation.
UR - http://www.scopus.com/inward/record.url?scp=45249095384&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=45249095384&partnerID=8YFLogxK
U2 - 10.1186/1471-2105-9-244
DO - 10.1186/1471-2105-9-244
M3 - Article
C2 - 18492285
AN - SCOPUS:45249095384
SN - 1471-2105
VL - 9
JO - BMC bioinformatics
JF - BMC bioinformatics
M1 - 244
ER -