Mantle-driven uplift of Hangai Dome: New seismic constraints from adjoint tomography

Min Chen, Fenglin Niu, Qinya Liu, Jeroen Tromp

Research output: Contribution to journalArticlepeer-review

53 Scopus citations

Abstract

The origin of Hangai Dome, an unusual large-scale, high-elevation low-relief landform in central Mongolia, remains enigmatic partly due to lack of constraints on its underlying seismic structure. Using adjoint tomography - a full waveform tomographic technique - and a large seismic waveform data set in East Asia, we discover beneath the dome a deep low shear wave speed (low-V) conduit indicating a slightly warmer (54 K to 127 K) upwelling from the transition zone. This upwelling is spatially linked to a broader uppermost mantle low-V region underlying the dome. Further observations of high compressional to shear wave speed ratios and positive radial anisotropy in the low-V region suggest partial melting and horizontal melt transport. We propose that the mantle upwelling induced decompression melting in the uppermost mantle and that excess heat associated with melt transport modified the lithosphere that isostatically compensates the surface uplift at upper mantle depths (>80 km).

Original languageEnglish (US)
Pages (from-to)6967-6974
Number of pages8
JournalGeophysical Research Letters
Volume42
Issue number17
DOIs
StatePublished - Sep 16 2015

All Science Journal Classification (ASJC) codes

  • Geophysics
  • General Earth and Planetary Sciences

Keywords

  • Hangai Dome
  • adjoint tomography
  • decompression melting
  • isostasy
  • mantle upwelling
  • partial melt

Fingerprint

Dive into the research topics of 'Mantle-driven uplift of Hangai Dome: New seismic constraints from adjoint tomography'. Together they form a unique fingerprint.

Cite this