Abstract
The Moon has no strong global magnetic field and only a tenuous atmosphere, so solar wind ions (∼95% H+, 5% He++) directly bombard the lunar surface, sputtering atoms and secondary ions from the exposed grains of the regolith. The secondary ions potentially provide surface composition information through secondary ion mass spectrometry (SIMS), a standard laboratory surface composition analysis technique. In this paper we report the results of laboratory SIMS experiments on lunar soil simulants using solar wind‐like ions. We find that H+ and He++, while not efficient sputterers, nevertheless produce significant fluxes of secondary lunar ions, including Na+, Mg+, Al+, Si+, K+, Ca+, Ti+, Mn+ and Fe+. We predict that lunar surface secondary‐ion fluxes range between ∼10 and 104 ions cm−2 s−1, depending on the species.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 2165-2168 |
| Number of pages | 4 |
| Journal | Geophysical Research Letters |
| Volume | 18 |
| Issue number | 11 |
| DOIs | |
| State | Published - Nov 1991 |
| Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Geophysics
- General Earth and Planetary Sciences