Abstract
Silicon quantum dots (SiQDs), with their broad absorption, narrow and size-tunable emission, and potential biocompatibility are highly attractive materials in biological imaging applications. The inherent hydrophobicity and instability of hydrogen-terminated SiQDs are obstacles to their widespread implementation. In this work, we successfully produced highly luminescent, hydrophilic SiQDs with long-term stability in water using non-thermal plasma techniques. Hydrogen-terminated SiQDs were produced in a low-pressure plasma and subsequently treated in water using an atmospheric-pressure plasma jet for surface modification. Preliminary assessments of the chemical mechanism(s) involved in the creation of water-soluble SiQDs were performed using Fenton's reaction and various plasma chemistries, suggesting both OH and O species play a key role in the oxidation of the SiQDs.
| Original language | English (US) |
|---|---|
| Article number | 08LT02 |
| Journal | Journal of Physics D: Applied Physics |
| Volume | 49 |
| Issue number | 8 |
| DOIs | |
| State | Published - Jan 27 2016 |
| Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Acoustics and Ultrasonics
- Surfaces, Coatings and Films
Keywords
- luminescence
- micro-plasma
- silicon quantum dots
- water soluble