Low Threshold Voltages Electrochemically Drive Gold Migration in Halide Perovskite Devices

Ross A. Kerner, Lianfeng Zhao, Steven P. Harvey, Joseph J. Berry, Jeffrey Schwartz, Barry P. Rand

Research output: Contribution to journalArticlepeer-review

Abstract

The constituent ions of halide perovskite materials are mobile in the solid state and known to participate in reduction/oxidation reactions. Yet few parameters related to electrochemical processes occurring within devices have been carefully determined. Here, we characterize such reactions in model MAPbI3 perovskite devices, and we quantify threshold voltages for key reactions. Gold is oxidized and mobilized under nitrogen, in the dark, at the MAPbI3/Au interface at 0.8 V. When this interface is buffered with the organic hole transport material (HTM), 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamino)-9,9′-spirobifluorene, MAPbI3 begins to degrade at 1.2 V; degradation liberates ions that subsequently enable Au migration. Thresholds are insensitive to MAPbI3 thickness or choice of organic HTM or oxide cathode, which suggests that these reactions are driven electrochemically; the electric field across the device is less important. These results have profound implications for understanding in operando degradation pathways of optoelectronic perovskite devices that are varied in terms of interface structures, active material compositions, and ranges of external stressors.

Original languageEnglish (US)
Pages (from-to)3352-3356
Number of pages5
JournalACS Energy Letters
DOIs
StateAccepted/In press - 2020

All Science Journal Classification (ASJC) codes

  • Chemistry (miscellaneous)
  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Low Threshold Voltages Electrochemically Drive Gold Migration in Halide Perovskite Devices'. Together they form a unique fingerprint.

Cite this