Low-Latency Federated Learning over Wireless Channels with Differential Privacy

Kang Wei, Jun Li, Chuan Ma, Ming Ding, Cailian Chen, Shi Jin, Zhu Han, H. Vincent Poor

Research output: Contribution to journalArticlepeer-review

39 Scopus citations


In federated learning (FL), model training is distributed over clients and local models are aggregated by a central server. The performance of uploaded models in such situations can vary widely due to imbalanced data distributions, potential demands on privacy protections, and quality of transmissions. In this paper, we aim to minimize FL training delay over wireless channels, constrained by overall training performance as well as each client's differential privacy (DP) requirement. We solve this problem in a multi-agent multi-armed bandit (MAMAB) framework to deal with the situation where there are multiple clients confronting different unknown transmission environments, e.g., channel fading and interference. Specifically, we first transform long-term constraints on both training performance and each client's DP into a virtual queue based on the Lyapunov drift technique. Then, we convert the MAMAB to a max-min bipartite matching problem at each communication round, by estimating rewards with the upper confidence bound (UCB) approach. More importantly, we propose two efficient solutions to this matching problem, i.e., a modified Hungarian algorithm and greedy matching with a better alternative (GMBA), of which the former can achieve the optimal solution with high complexity while the latter approaches a better trade-off by enabling verified low-complexity with little performance loss. In addition, we develop an upper bound on the expected regret of this MAMAB based FL framework, which shows a linear growth over the logarithm of communication rounds, justifying its theoretical feasibility. Extensive experimental results are conducted to validate the effectiveness of our proposed algorithms, and the impacts of various parameters on the FL performance over wireless edge networks are also discussed.

Original languageEnglish (US)
Pages (from-to)290-307
Number of pages18
JournalIEEE Journal on Selected Areas in Communications
Issue number1
StatePublished - Jan 1 2022
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Electrical and Electronic Engineering


  • Differential privacy
  • Federated learning
  • Max-min bipartite matching
  • Multi-agent multi-armed bandit


Dive into the research topics of 'Low-Latency Federated Learning over Wireless Channels with Differential Privacy'. Together they form a unique fingerprint.

Cite this