Low energy electrodynamics of CrI3 layered ferromagnet

Luca Tomarchio, Salvatore Macis, Lorenzo Mosesso, Loi T. Nguyen, Antonio Grilli, Mariangela Cestelli Guidi, Robert J. Cava, Stefano Lupi

Research output: Contribution to journalArticlepeer-review

Abstract

We report on the optical properties from terahertz (THz) to Near-Infrared (NIR) of the layered magnetic compound CrI3 at various temperatures, both in the paramagnetic and ferromagnetic phase. In the NIR spectral range, we observe an insulating electronic gap around 1.1 eV which strongly hardens with decreasing temperature. The blue shift observed represents a record in insulating materials and it is a fingerprint of a strong electron-phonon interaction. Moreover, a further gap hardening is observed below the Curie temperature, indicating the establishment of an effective interaction between electrons and magnetic degrees of freedom in the ferromagnetic phase. Similar interactions are confirmed by the disappearance of some phonon modes in the same phase, as expected from a spin-lattice interaction theory. Therefore, the optical properties of CrI3 reveal a complex interaction among electronic, phononic and magnetic degrees of freedom, opening many possibilities for its use in 2-Dimensional heterostructures.

Original languageEnglish (US)
Article number23405
JournalScientific reports
Volume11
Issue number1
DOIs
StatePublished - Dec 2021

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Low energy electrodynamics of CrI3 layered ferromagnet'. Together they form a unique fingerprint.

Cite this