TY - JOUR

T1 - Low-dimensional models of a temporally evolving free shear layer

AU - Wei, Mingjun

AU - Rowley, Clarence Worth

N1 - Funding Information:
We thank Bernd Noack for many helpful suggestions, and the reviewers for especially constructive criticism. This work was supported by the AFOSR, grant FA9550-05-1-0369, and the NSF, grant CMS-0347239. M. W. would also like to acknowledge the support from Sandia-University Research Program (SURP) by Sandia National Laboratories.

PY - 2009

Y1 - 2009

N2 - We develop low-dimensional models for the evolution of a free shear layer in a periodic domain. The goal is to obtain models simple enough to be analysed using standard tools from dynamical systems theory, yet including enough of the physics to model nonlinear saturation and energy transfer between modes (e.g. pairing). In the present paper, two-dimensional direct numerical simulations of a spatially periodic, temporally developing shear layer are performed. Low-dimensional models for the dynamics are obtained using a modified version of proper orthogonal decomposition (POD)/Galerkin projection, in which the basis functions can scale in space as the shear layer spreads. Equations are obtained for the rate of change of the shear-layer thickness. A model with two complex modes can describe certain single-wavenumber features of the system, such as vortex roll-up, nonlinear saturation, and viscous damping. A model with four complex modes can describe interactions between two wavenumbers (vortex pairing) as well. At least two POD modes are required for each wavenumber in space to sufficiently describe the dynamics, though, for each wavenumber, more than 90% energy is captured by the first POD mode in the scaled space. The comparison of POD modes to stability eigenfunction modes seems to give a plausible explanation. We have also observed a relation between the phase difference of the first and second POD modes of the same wavenumber and the sudden turning point for shear-layer dynamics in both direct numerical simulations and model computations.

AB - We develop low-dimensional models for the evolution of a free shear layer in a periodic domain. The goal is to obtain models simple enough to be analysed using standard tools from dynamical systems theory, yet including enough of the physics to model nonlinear saturation and energy transfer between modes (e.g. pairing). In the present paper, two-dimensional direct numerical simulations of a spatially periodic, temporally developing shear layer are performed. Low-dimensional models for the dynamics are obtained using a modified version of proper orthogonal decomposition (POD)/Galerkin projection, in which the basis functions can scale in space as the shear layer spreads. Equations are obtained for the rate of change of the shear-layer thickness. A model with two complex modes can describe certain single-wavenumber features of the system, such as vortex roll-up, nonlinear saturation, and viscous damping. A model with four complex modes can describe interactions between two wavenumbers (vortex pairing) as well. At least two POD modes are required for each wavenumber in space to sufficiently describe the dynamics, though, for each wavenumber, more than 90% energy is captured by the first POD mode in the scaled space. The comparison of POD modes to stability eigenfunction modes seems to give a plausible explanation. We have also observed a relation between the phase difference of the first and second POD modes of the same wavenumber and the sudden turning point for shear-layer dynamics in both direct numerical simulations and model computations.

UR - http://www.scopus.com/inward/record.url?scp=57749185641&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=57749185641&partnerID=8YFLogxK

U2 - 10.1017/S0022112008004539

DO - 10.1017/S0022112008004539

M3 - Article

AN - SCOPUS:57749185641

VL - 618

SP - 113

EP - 134

JO - Journal of Fluid Mechanics

JF - Journal of Fluid Mechanics

SN - 0022-1120

ER -