Long-term high-resolution radar rainfall fields for urban hydrology

Daniel B. Wright, James A. Smith, Gabriele Villarini, Mary Lynn Baeck

Research output: Contribution to journalArticle

28 Scopus citations

Abstract

Accurate records of high-resolution rainfall fields are essential in urban hydrology, and are lacking in many areas. We develop a high-resolution (15 min, 1 km2) radar rainfall data set for Charlotte, North Carolina during the 2001-2010 period using the Hydro-NEXRAD system with radar reflectivity from the National Weather Service Weather Surveillance Radar 1988 Doppler weather radar located in Greer, South Carolina. A dense network of 71 rain gages is used for estimating and correcting radar rainfall biases. Radar rainfall estimates with daily mean field bias (MFB) correction accurately capture the spatial and temporal structure of extreme rainfall, but bias correction at finer timescales can improve cold-season and tropical cyclone rainfall estimates. Approximately 25 rain gages are sufficient to estimate daily MFB over an area of at least 2,500 km2, suggesting that robust bias correction is feasible in many urban areas. Conditional (rain-rate dependent) bias can be removed, but at the expense of other performance criteria such as mean square error. Hydro-NEXRAD radar rainfall estimates are also compared with the coarser resolution (hourly, 16 km2) Stage IV operational rainfall product. Stage IV is adequate for flood water balance studies but is insufficient for applications such as urban flood modeling, in which the temporal and spatial scales of relevant hydrologic processes are short. We recommend the increased use of high-resolution radar rainfall fields in urban hydrology.

Original languageEnglish (US)
Pages (from-to)713-734
Number of pages22
JournalJournal of the American Water Resources Association
Volume50
Issue number3
DOIs
StatePublished - Jan 1 2014

All Science Journal Classification (ASJC) codes

  • Ecology
  • Water Science and Technology
  • Earth-Surface Processes

Fingerprint Dive into the research topics of 'Long-term high-resolution radar rainfall fields for urban hydrology'. Together they form a unique fingerprint.

  • Cite this