TY - JOUR
T1 - Long-term composition dynamics of PAH-containing NAPLs and implications for risk assessment
AU - Peters, Catherine Anne
AU - Knightes, Christopher D.
AU - Brown, Derick G.
PY - 1999/12/15
Y1 - 1999/12/15
N2 - Subsurface contaminants such as coal tar, creosote, diesel fuel, and other petroleum-derived materials typically exist as very complex chemical mixtures. Risk assessment is useful for site management if a single metric can represent the composition-dependent risk profile of the mixture. This paper examines the factors governing human health risk assessment for multicomponent nonaqueous phase liquids (NAPLs) containing polycyclic aromatic hydrocarbons (PAHs). A model is presented describing the interdependence of the dissolution rates of individual compounds and the shifts in the NAPL composition that occur due to the large differences in aqueous solubilities. The model also accounts for solidification of the less soluble NAPL constituents. Thirty-year numerical simulations describe composition dynamics for natural environmental processes as well as three remediation processes: pump-and- treat, bioremediation, and solvent extraction. Carcinogenic risk due to ingestion of contaminated groundwater at the source is estimated, and its dependence on contaminant removal and NAPL composition shifts is described. When composition dynamics are slow, a compound like naphthalene has great potential to contribute to risk because it may persist in groundwater. When there is significant depletion of the lower molecular weight compounds, the risk is dominated by contributions from compounds such as benzo[a]pyrene. Remediation technologies have the greatest potential for risk reduction if they are effective in removing the more carcinogenic, high molecular weight compounds. Because PAHs can contribute to risk for different reasons and because of the interdependence of their behaviors, compositional approaches lead to better risk predictions for PAHs than simple lumped metrics such as total petroleum hydrocarbon (TPH).
AB - Subsurface contaminants such as coal tar, creosote, diesel fuel, and other petroleum-derived materials typically exist as very complex chemical mixtures. Risk assessment is useful for site management if a single metric can represent the composition-dependent risk profile of the mixture. This paper examines the factors governing human health risk assessment for multicomponent nonaqueous phase liquids (NAPLs) containing polycyclic aromatic hydrocarbons (PAHs). A model is presented describing the interdependence of the dissolution rates of individual compounds and the shifts in the NAPL composition that occur due to the large differences in aqueous solubilities. The model also accounts for solidification of the less soluble NAPL constituents. Thirty-year numerical simulations describe composition dynamics for natural environmental processes as well as three remediation processes: pump-and- treat, bioremediation, and solvent extraction. Carcinogenic risk due to ingestion of contaminated groundwater at the source is estimated, and its dependence on contaminant removal and NAPL composition shifts is described. When composition dynamics are slow, a compound like naphthalene has great potential to contribute to risk because it may persist in groundwater. When there is significant depletion of the lower molecular weight compounds, the risk is dominated by contributions from compounds such as benzo[a]pyrene. Remediation technologies have the greatest potential for risk reduction if they are effective in removing the more carcinogenic, high molecular weight compounds. Because PAHs can contribute to risk for different reasons and because of the interdependence of their behaviors, compositional approaches lead to better risk predictions for PAHs than simple lumped metrics such as total petroleum hydrocarbon (TPH).
UR - http://www.scopus.com/inward/record.url?scp=0033572004&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033572004&partnerID=8YFLogxK
U2 - 10.1021/es981203e
DO - 10.1021/es981203e
M3 - Article
AN - SCOPUS:0033572004
SN - 0013-936X
VL - 33
SP - 4499
EP - 4507
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 24
ER -