Long-Context Language Modeling with Parallel Context Encoding

Howard Yen, Tianyu Gao, Danqi Chen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Extending large language models (LLMs) to process longer inputs is crucial for a wide range of applications. However, the substantial computational cost of transformers and limited generalization of positional encoding restrict the size of their context window. We introduce Context Expansion with Parallel Encoding (CEPE), a framework that can be applied to any existing decoder-only LLMs to extend their context window. CEPE employs a small encoder to process long inputs chunk by chunk, enabling the frozen decoder to utilize additional contexts via cross-attention. CEPE is efficient, generalizable, and versatile: trained with 8K-token documents, it extends the context window of LLAMA-2 to 128K tokens, offering 10× the throughput with only 1/6 of the memory. CEPE yields strong performance on language modeling and in-context learning. CEPE also excels in retrieval-augmented applications, while existing long-context models degenerate with retrieved contexts. We further introduce a CEPE variant that can extend the context window of instruction-tuned models using only unlabeled data, and showcase its effectiveness on LLAMA-2-CHAT, leading to a strong instruction-following model that can leverage very long contexts on downstream tasks.

Original languageEnglish (US)
Title of host publicationLong Papers
EditorsLun-Wei Ku, Andre F. T. Martins, Vivek Srikumar
PublisherAssociation for Computational Linguistics (ACL)
Pages2588-2610
Number of pages23
ISBN (Electronic)9798891760943
DOIs
StatePublished - 2024
Event62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Bangkok, Thailand
Duration: Aug 11 2024Aug 16 2024

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
Volume1
ISSN (Print)0736-587X

Conference

Conference62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
Country/TerritoryThailand
CityBangkok
Period8/11/248/16/24

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'Long-Context Language Modeling with Parallel Context Encoding'. Together they form a unique fingerprint.

Cite this