Abstract
Policy optimization methods with function approximation are widely used in multi-agent reinforcement learning. However, it remains elusive how to design such algorithms with statistical guarantees. Leveraging a multi-agent performance difference lemma that characterizes the landscape of multi-agent policy optimization, we find that the localized action value function serves as an ideal descent direction for each local policy. Motivated by the observation, we present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO. We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate. We extend our algorithm to the off-policy setting and introduce pessimism to policy evaluation, which aligns with experiments. To our knowledge, this is the first provably convergent multi-agent PPO algorithm in cooperative Markov games.
Original language | English (US) |
---|---|
Pages (from-to) | 42200-42226 |
Number of pages | 27 |
Journal | Proceedings of Machine Learning Research |
Volume | 202 |
State | Published - 2023 |
Externally published | Yes |
Event | 40th International Conference on Machine Learning, ICML 2023 - Honolulu, United States Duration: Jul 23 2023 → Jul 29 2023 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability