TY - JOUR
T1 - Local Number Fluctuations in Hyperuniform and Nonhyperuniform Systems
T2 - Higher-Order Moments and Distribution Functions
AU - Torquato, Salvatore
AU - Kim, Jaeuk
AU - Klatt, Michael A.
N1 - Publisher Copyright:
© 2021 authors. Published by the American Physical Society.
PY - 2021/5
Y1 - 2021/5
N2 - The local number variance σ2(R) associated with a spherical sampling window of radius R enables a classification of many-particle systems in d-dimensional Euclidean space Rd according to the degree to which large-scale density fluctuations are suppressed, resulting in a demarcation between hyperuniform and nonhyperuniform phyla. To more completely characterize density fluctuations, we carry out an extensive study of higher-order moments or cumulants, including the skewness γ1(R), excess kurtosis γ2(R), and the corresponding probability distribution function P[N(R)] of a large family of models across the first three space dimensions, including both hyperuniform and nonhyperuniform systems with varying degrees of short- and long-range order. To carry out this comprehensive program, we derive new theoretical results that apply to general point processes, and we conduct high-precision numerical studies. Specifically, we derive explicit closed-form integral expressions for γ1(R) and γ2(R) that encode structural information up to three-body and four-body correlation functions, respectively. We also derive rigorous bounds on γ1(R), γ2(R), and P[N(R)] for general point processes and corresponding exact results for general packings of identical spheres. High-quality simulation data for γ1(R), γ2(R), and P[N(R)] are generated for each model. We also ascertain the proximity of P[N(R)] to the normal distribution via a novel Gaussian "distance"metric l2(R). Among all models, the convergence to a central limit theorem (CLT) is generally fastest for the disordered hyperuniform processes in two or higher dimensions such that γ1(R)∼l2(R)∼R-(d+1)/2 and γ2(R)∼R-(d+1) for large R. The convergence to a CLT is slower for standard nonhyperuniform models and slowest for the "antihyperuniform"model studied here. We prove that one-dimensional hyperuniform systems of class I or any d-dimensional lattice cannot obey a CLT. Remarkably, we discover a type of universality in that, for all of our models that obey a CLT, the gamma distribution provides a good approximation to P[N(R)] across all dimensions for intermediate to large values of R, enabling us to estimate the large-R scalings of γ1(R), γ2(R), and l2(R). For any d-dimensional model that "decorrelates"or "correlates"with d, we elucidate why P[N(R)] increasingly moves toward or away from Gaussian-like behavior, respectively. Our work sheds light on the fundamental importance of higher-order structural information to fully characterize density fluctuations in many-body systems across length scales and dimensions, and thus has broad implications for condensed matter physics, engineering, mathematics, and biology.
AB - The local number variance σ2(R) associated with a spherical sampling window of radius R enables a classification of many-particle systems in d-dimensional Euclidean space Rd according to the degree to which large-scale density fluctuations are suppressed, resulting in a demarcation between hyperuniform and nonhyperuniform phyla. To more completely characterize density fluctuations, we carry out an extensive study of higher-order moments or cumulants, including the skewness γ1(R), excess kurtosis γ2(R), and the corresponding probability distribution function P[N(R)] of a large family of models across the first three space dimensions, including both hyperuniform and nonhyperuniform systems with varying degrees of short- and long-range order. To carry out this comprehensive program, we derive new theoretical results that apply to general point processes, and we conduct high-precision numerical studies. Specifically, we derive explicit closed-form integral expressions for γ1(R) and γ2(R) that encode structural information up to three-body and four-body correlation functions, respectively. We also derive rigorous bounds on γ1(R), γ2(R), and P[N(R)] for general point processes and corresponding exact results for general packings of identical spheres. High-quality simulation data for γ1(R), γ2(R), and P[N(R)] are generated for each model. We also ascertain the proximity of P[N(R)] to the normal distribution via a novel Gaussian "distance"metric l2(R). Among all models, the convergence to a central limit theorem (CLT) is generally fastest for the disordered hyperuniform processes in two or higher dimensions such that γ1(R)∼l2(R)∼R-(d+1)/2 and γ2(R)∼R-(d+1) for large R. The convergence to a CLT is slower for standard nonhyperuniform models and slowest for the "antihyperuniform"model studied here. We prove that one-dimensional hyperuniform systems of class I or any d-dimensional lattice cannot obey a CLT. Remarkably, we discover a type of universality in that, for all of our models that obey a CLT, the gamma distribution provides a good approximation to P[N(R)] across all dimensions for intermediate to large values of R, enabling us to estimate the large-R scalings of γ1(R), γ2(R), and l2(R). For any d-dimensional model that "decorrelates"or "correlates"with d, we elucidate why P[N(R)] increasingly moves toward or away from Gaussian-like behavior, respectively. Our work sheds light on the fundamental importance of higher-order structural information to fully characterize density fluctuations in many-body systems across length scales and dimensions, and thus has broad implications for condensed matter physics, engineering, mathematics, and biology.
UR - http://www.scopus.com/inward/record.url?scp=85106124270&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85106124270&partnerID=8YFLogxK
U2 - 10.1103/PhysRevX.11.021028
DO - 10.1103/PhysRevX.11.021028
M3 - Article
AN - SCOPUS:85106124270
SN - 2160-3308
VL - 11
JO - Physical Review X
JF - Physical Review X
IS - 2
M1 - 021028
ER -