TY - GEN
T1 - List and unique coding for interactive communication in the presence of adversarial noise
AU - Braverman, Mark
AU - Efremenko, Klim
N1 - Publisher Copyright:
© 2014 IEEE.
PY - 2014/12/7
Y1 - 2014/12/7
N2 - In this paper we extend the notion of list-decoding to the setting of interactive communication and study its limits. In particular, we show that any protocol can be encoded, with a constant rate, into a list-decodable protocol which is resilient to a noise rate of up to 1/2-ε, and that this is tight. Using our list-decodable construction, we study a more nuanced model of noise where the adversary can corrupt up to a fraction α Alice's communication and up to a fraction β of Bob's communication. We use list-decoding in order to fully characterize the region RU of pairs (α β) for which unique decoding with a constant rate is possible. The region RU turns out to be quite unusual in its shape. In particular, it is bounded by a piecewise-differentiable curve with infinitely many pieces. We show that outside this region, the rate must be exponential. This suggests that in some error regimes, list-decoding is necessary for optimal unique decoding. We also consider the setting where only one party of the communication must output the correct answer. We precisely characterize the region of all pairs (α β) for which one-sided unique decoding is possible in a way that Alice will output the correct answer.
AB - In this paper we extend the notion of list-decoding to the setting of interactive communication and study its limits. In particular, we show that any protocol can be encoded, with a constant rate, into a list-decodable protocol which is resilient to a noise rate of up to 1/2-ε, and that this is tight. Using our list-decodable construction, we study a more nuanced model of noise where the adversary can corrupt up to a fraction α Alice's communication and up to a fraction β of Bob's communication. We use list-decoding in order to fully characterize the region RU of pairs (α β) for which unique decoding with a constant rate is possible. The region RU turns out to be quite unusual in its shape. In particular, it is bounded by a piecewise-differentiable curve with infinitely many pieces. We show that outside this region, the rate must be exponential. This suggests that in some error regimes, list-decoding is necessary for optimal unique decoding. We also consider the setting where only one party of the communication must output the correct answer. We precisely characterize the region of all pairs (α β) for which one-sided unique decoding is possible in a way that Alice will output the correct answer.
KW - Interactive Communication
KW - List Decodable Codes
KW - Tree Codes
UR - http://www.scopus.com/inward/record.url?scp=84920029638&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84920029638&partnerID=8YFLogxK
U2 - 10.1109/FOCS.2014.33
DO - 10.1109/FOCS.2014.33
M3 - Conference contribution
AN - SCOPUS:84920029638
T3 - Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
SP - 236
EP - 245
BT - Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
PB - IEEE Computer Society
T2 - 55th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2014
Y2 - 18 October 2014 through 21 October 2014
ER -