Lindemann measures for the solid-liquid phase transition

Charusita Chakravarty, Pablo G. Debenedetti, Frank H. Stillinger

Research output: Contribution to journalArticlepeer-review

82 Scopus citations


A set of Lindemann measures, based on positional deviations or return distances, defined with respect to mechanically stable inherent structure configurations, is applied to understand the solid-liquid phase transition in a Lennard-Jones-type system. The key quantity is shown to be the single-particle return distance-squared distribution. The first moment of this distribution is related to the Lindemann parameter which is widely used to predict the melting temperature of a variety of solids. The correlation of the single-particle return distance and local bond orientational order parameter in the liquid phase provides insights into mechanisms for melting. These generalized Lindemann measures, especially the lower order moments of the single-particle return distance distribution, show clear signatures of the transition of the liquid from the stable to the metastable, supercooled regime and serve as landscape-based indicators of the thermodynamic freezing transition for the Lennard-Jones-type system investigated.

Original languageEnglish (US)
Article number204508
JournalJournal of Chemical Physics
Issue number20
StatePublished - 2007

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Lindemann measures for the solid-liquid phase transition'. Together they form a unique fingerprint.

Cite this