Abstract
To any free group automorphism, we associate a real pretree with several nice properties. First, it has a rigid/non-nesting action of the free group with trivial arc stabilizers. Secondly, there is an expanding pretree-Automorphism of the real pretree that represents the free group automorphism. Finally and crucially, the loxodromic elements are exactly those whose (conjugacy class) length grows exponentially under iteration of the automorphism; thus, the action on the real pretree is able to detect the growth type of an element. This construction extends the theory of metric trees that has been used to study free group automorphisms. The new idea is that one can equivariantly blow up an isometric action on a real tree with respect to other real trees and get a rigid action on a treelike structure known as a real pretree. Topology plays no role in this construction as all the work is done in the language of pretrees (intervals).
Original language | English (US) |
---|---|
Article number | e57 |
Journal | Forum of Mathematics, Sigma |
Volume | 12 |
DOIs | |
State | Published - May 10 2024 |
All Science Journal Classification (ASJC) codes
- Analysis
- Theoretical Computer Science
- Algebra and Number Theory
- Statistics and Probability
- Mathematical Physics
- Geometry and Topology
- Discrete Mathematics and Combinatorics
- Computational Mathematics