Abstract
Quantum chromodynamics has placed the problem of hadronic symmetry breaking on a rational basis. The current-quark mass ratios can be shown to be renormalization-group invariants up to small and controllable corrections from flavor interactions. We calculate the mass ratios of the light u, d, and s quarks using the pseudoscalar-meson mass spectrum, the baryon mass spectrum, and the 3 decay. The main theoretical assumptions are that low-lying-resonance and Born terms correctly estimate the photonic contribution to isotopic mass splitting and that chiral perturbation theory equivalently kaon partial convervation of axialvector current correctly estimates chiral-symmetry breaking. Taking account of all leading-order chiral corrections to the meson spectrum and from the baryon spectrum and 3 decay we obtain mumd=0.380.13 and mdms=0.0450.011. We conclude that while a vanishing up-quark mass is not rigorously ruled out it is unattractive from the standpoint of the presently consistent phenomenology of hadronic symmetry breaking.
Original language | English (US) |
---|---|
Pages (from-to) | 2070-2079 |
Number of pages | 10 |
Journal | Physical Review D |
Volume | 19 |
Issue number | 7 |
DOIs | |
State | Published - 1979 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy (miscellaneous)