Light-quark mass spectrum in quantum chromodynamics

Paul Langacker, Heinz Pagels

Research output: Contribution to journalArticlepeer-review

110 Scopus citations

Abstract

Quantum chromodynamics has placed the problem of hadronic symmetry breaking on a rational basis. The current-quark mass ratios can be shown to be renormalization-group invariants up to small and controllable corrections from flavor interactions. We calculate the mass ratios of the light u, d, and s quarks using the pseudoscalar-meson mass spectrum, the baryon mass spectrum, and the 3 decay. The main theoretical assumptions are that low-lying-resonance and Born terms correctly estimate the photonic contribution to isotopic mass splitting and that chiral perturbation theory equivalently kaon partial convervation of axialvector current correctly estimates chiral-symmetry breaking. Taking account of all leading-order chiral corrections to the meson spectrum and from the baryon spectrum and 3 decay we obtain mumd=0.380.13 and mdms=0.0450.011. We conclude that while a vanishing up-quark mass is not rigorously ruled out it is unattractive from the standpoint of the presently consistent phenomenology of hadronic symmetry breaking.

Original languageEnglish (US)
Pages (from-to)2070-2079
Number of pages10
JournalPhysical Review D
Volume19
Issue number7
DOIs
StatePublished - 1979

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Light-quark mass spectrum in quantum chromodynamics'. Together they form a unique fingerprint.

Cite this