Abstract
This work explores light-driven electron transport through cross-conjugated molecules with different numbers of alkenyl groups. In the framework of coherent quantum transport, the analysis uses single-particle Green's functions together with non-Hermitian Floquet theory. With realistic parameters stemming from spectroscopy, the simulations show that measurable current (∼1011A) caused by photon-assisted tunneling should be observed in a weak driving field (∼2 × 105V/cm). Current-field intensity characteristics give one-photon and two-photon field amplitude power laws. The gap between the molecular orbital and the Fermi level of the electrodes is revealed by current-field frequency characteristics. Due to generalized parity symmetry, the cross-conjugated molecules with odd and even numbers of alkenyl groups exhibit completely different current-polarization characteristics, which may provide an advantageous feature in nanoelectronic applications.
Original language | English (US) |
---|---|
Article number | 124703 |
Journal | Journal of Chemical Physics |
Volume | 141 |
Issue number | 12 |
DOIs | |
State | Published - Sep 28 2014 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy
- Physical and Theoretical Chemistry