Lifetime renormalization of weakly anharmonic superconducting qubits. I. Role of number nonconserving terms

Moein Malekakhlagh, Alexandru Petrescu, Hakan E. Türeci

Research output: Contribution to journalArticlepeer-review

21 Scopus citations


The dynamics of a weakly anharmonic superconducting qubit in a complex electromagnetic environment is generally well described by an effective multimode Kerr Hamiltonian at sufficiently weak excitation. This Hamiltonian can be embedded in a master equation with losses determined by the details of the electromagnetic environment. Recent experiments indicate, however, that when a superconducting circuit is driven with microwave signals populating the system with sufficiently high excitations, the observed relaxation rates appear to be substantially different from expectations based on the electromagnetic environment of the qubit alone. This issue is a limiting factor in the optimization of superconducting qubit readout schemes. We claim here that an effective master equation with drive-power-dependent parameters is an efficient approach to model such quantum dynamics. In this sequence of papers, we derive effective master equations, whose parameters exhibit nonlinear dependence on the excitation level of the circuit as well as the electromagnetic environment of the qubit. We show that the number nonconserving terms in the qubit nonlinearity generally lead to a renormalization of dissipative parameters of the effective master equation, while the number conserving terms give rise to a renormalization of the system frequencies. Here, in Paper I, we consider the excitation-relaxation dynamics of a transmon qubit that is prepared in a certain initial state, but is not driven otherwise. A unitary transformation technique is introduced to study the renormalization of (i) qubit relaxation due to coupling to a generic bath and (ii) Purcell decay. Analytic expressions are provided for the dependence of the nonlinear dissipative terms on the details of the electromagnetic environment of the qubit. The perturbation technique based on unitary transformations developed here is generalized to the continuously driven case in Paper II [A. Petrescu, Phys. Rev. B 101, 134510 (2020)10.1103/PhysRevB.101.134510].

Original languageEnglish (US)
Article number134509
JournalPhysical Review B
Issue number13
StatePublished - Apr 1 2020
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Lifetime renormalization of weakly anharmonic superconducting qubits. I. Role of number nonconserving terms'. Together they form a unique fingerprint.

Cite this