TY - GEN
T1 - Lifetime improvement of wireless sensor networks by collaborative beamforming and cooperative transmission
AU - Han, Zhu
AU - Poor, H. Vincent
PY - 2007
Y1 - 2007
N2 - Extending network lifetime of battery-operated devices is a key design issue that allows uninterrupted information exchange among distributive nodes in wireless sensor networks. Collaborative beamforming (CB) and cooperative transmission (CT) have recently emerged as new communication techniques that enable and leverage effective resource sharing among collaborative/cooperative nodes. In this paper, we seek to maximize the lifetime of sensor networks by using the new idea that closely located nodes can use CB/CT to reduce the load or even avoid packet forwarding requests to nodes that have critical battery life. First, we study the effectiveness of CB/CT to improve the signal strength at a faraway destination using energy in nearby nodes. Then, a 2D disk case is analyzed to assess the resulting performance improvement For general networks, if information-generation rates are fixed, the new routing problem is formulated as a linear programming problem; otherwise, the cost for routing is dynamically adjusted according to the amount of energy remaining and the effectiveness of CB/CT. From the analysis and simulation results, it is seen that the proposed schemes can improve the lifetime by about 90% in the 2D disk network and by about 10% in the general networks, compared to existing schemes.
AB - Extending network lifetime of battery-operated devices is a key design issue that allows uninterrupted information exchange among distributive nodes in wireless sensor networks. Collaborative beamforming (CB) and cooperative transmission (CT) have recently emerged as new communication techniques that enable and leverage effective resource sharing among collaborative/cooperative nodes. In this paper, we seek to maximize the lifetime of sensor networks by using the new idea that closely located nodes can use CB/CT to reduce the load or even avoid packet forwarding requests to nodes that have critical battery life. First, we study the effectiveness of CB/CT to improve the signal strength at a faraway destination using energy in nearby nodes. Then, a 2D disk case is analyzed to assess the resulting performance improvement For general networks, if information-generation rates are fixed, the new routing problem is formulated as a linear programming problem; otherwise, the cost for routing is dynamically adjusted according to the amount of energy remaining and the effectiveness of CB/CT. From the analysis and simulation results, it is seen that the proposed schemes can improve the lifetime by about 90% in the 2D disk network and by about 10% in the general networks, compared to existing schemes.
UR - http://www.scopus.com/inward/record.url?scp=38549094231&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=38549094231&partnerID=8YFLogxK
U2 - 10.1109/ICC.2007.651
DO - 10.1109/ICC.2007.651
M3 - Conference contribution
AN - SCOPUS:38549094231
SN - 1424403537
SN - 9781424403530
T3 - IEEE International Conference on Communications
SP - 3954
EP - 3958
BT - 2007 IEEE International Conference on Communications, ICC'07
T2 - 2007 IEEE International Conference on Communications, ICC'07
Y2 - 24 June 2007 through 28 June 2007
ER -