Left-right asymmetric heart jogging increases the robustness of dextral heart looping in zebrafish

Daniel T. Grimes, Victoria L. Patterson, Gabriel Luna-Arvizu, Jodi Schottenfeld-Roames, Zoe H. Irons, Rebecca D. Burdine

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

Building a left-right (L-R) asymmetric organ requires asymmetric information. This comes from various sources, including asymmetries in embryo-scale genetic cascades (including the left-sided Nodal cascade), organ-intrinsic mechanical forces, and cell-level chirality, but the relative influence of these sources and how they collaborate to drive asymmetric morphogenesis is not understood. During zebrafish heart development, the linear heart tube extends to the left of the midline in a process known as jogging. The jogged heart then undergoes dextral (i.e. rightward) looping to correctly position the heart chambers relative to one another. Left lateralized jogging is governed by the left-sided expression of Nodal in mesoderm tissue, while looping laterality is mainly controlled by heart-intrinsic cell-level asymmetries in the actomyosin cytoskeleton. The purpose of lateralized jogging is not known. Moreover, after jogging, the heart tube returns to an almost midline position and so it is not clear whether or how jogging may impact the dextral loop. Here, we characterize a novel loss-of-function mutant in the zebrafish Nodal homolog southpaw (spaw) that appears to be a true null. We then assess the relationship between jogging and looping laterality in embryos lacking asymmetric Spaw signals. We found that the probability of a dextral loop occurring, does not depend on asymmetric Spaw signals per se, but does depend on the laterality of jogging. Thus, we conclude that the role of leftward jogging is to spatially position the heart tube in a manner that promotes robust dextral looping. When jogging laterality is abnormal, the robustness of dextral looping decreases. This establishes a cooperation between embryo-scale Nodal-dependent L-R asymmetries and organ-intrinsic cellular chirality in the control of asymmetric heart morphogenesis and shows that the transient laterality of the early heart tube has consequences for later heart morphogenetic events.

Original languageEnglish (US)
Pages (from-to)79-86
Number of pages8
JournalDevelopmental biology
Volume459
Issue number2
DOIs
StatePublished - Mar 15 2020

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Developmental Biology
  • Cell Biology

Keywords

  • Chirality
  • Heart jogging
  • Heart looping
  • Heterotaxy
  • Left-right asymmetry
  • Morphogenesis
  • Nodal
  • Zebrafish

Fingerprint Dive into the research topics of 'Left-right asymmetric heart jogging increases the robustness of dextral heart looping in zebrafish'. Together they form a unique fingerprint.

  • Cite this