Leaves as bottlenecks: The contribution of tree leaves to hydraulic resistance within the soil−plant−atmosphere continuum

Brett T. Wolfe, Matteo Detto, Yong Jiang Zhang, Kristina J. Anderson-Teixeira, Tim Brodribb, Adam D. Collins, Chloe Crawford, L. Turin Dickman, Kim S. Ely, Jessica Francisco, Preston D. Gurry, Haigan Hancock, Christopher T. King, Adelodun R. Majekobaje, Christian J. Mallett, Nate G. McDowell, Zachary Mendheim, Sean T. Michaletz, Daniel B. Myers, Ty J. PriceAlistair Rogers, Lawren Sack, Shawn P. Serbin, Zafar Siddiq, David Willis, Jin Wu, Joseph Zailaa, S. Joseph Wright

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


Within vascular plants, the partitioning of hydraulic resistance along the soil-to-leaf continuum affects transpiration and its response to environmental conditions. In trees, the fractional contribution of leaf hydraulic resistance (Rleaf) to total soil-to-leaf hydraulic resistance (Rtotal), or fRleaf (=Rleaf/Rtotal), is thought to be large, but this has not been tested comprehensively. We compiled a multibiome data set of fRleaf using new and previously published measurements of pressure differences within trees in situ. Across 80 samples, fRleaf averaged 0.51 (95% confidence interval [CI] = 0.46−0.57) and it declined with tree height. We also used the allometric relationship between field-based measurements of soil-to-leaf hydraulic conductance and laboratory-based measurements of leaf hydraulic conductance to compute the average fRleaf for 19 tree samples, which was 0.40 (95% CI = 0.29−0.56). The in situ technique produces a more accurate descriptor of fRleaf because it accounts for dynamic leaf hydraulic conductance. Both approaches demonstrate the outsized role of leaves in controlling tree hydrodynamics. A larger fRleaf may help stems from loss of hydraulic conductance. Thus, the decline in fRleaf with tree height would contribute to greater drought vulnerability in taller trees and potentially to their observed disproportionate drought mortality.

Original languageEnglish (US)
Pages (from-to)736-746
Number of pages11
JournalPlant, Cell and Environment
Issue number3
StatePublished - Mar 2023

All Science Journal Classification (ASJC) codes

  • Physiology
  • Plant Science


  • drought response
  • hydrodynamic modelling
  • leaf hydraulic conductivity
  • plant hydraulics
  • plant water relations
  • whole-tree hydraulic conductance


Dive into the research topics of 'Leaves as bottlenecks: The contribution of tree leaves to hydraulic resistance within the soil−plant−atmosphere continuum'. Together they form a unique fingerprint.

Cite this