TY - GEN
T1 - Learning winner-take-all competition between groups of neurons in lateral inhibitory networks
AU - Xie, Xiaohui
AU - Hahnloser, Richard
AU - Seung, Hyunjune Sebastian
PY - 2001
Y1 - 2001
N2 - It has long been known that lateral inhibition in neural networks can lead to a winner-take-all competition, so that only a single neuron is active at a steady state. Here we show how to organize lateral inhibition so that groups of neurons compete to be active. Given a collection of potentially overlapping groups, the inhibitory connectivity is set by a formula that can be interpreted as arising from a simple learning rule. Our analysis demonstrates that such inhibition generally results in winner-take-all competition between the given groups, with the exception of some degenerate cases. In a broader context, the network serves as a particular illustration of the general distinction between permitted and forbidden sets, which was introduced recently. From this viewpoint, the computational function of our network is to store and retrieve memories as permitted sets of coactive neurons.
AB - It has long been known that lateral inhibition in neural networks can lead to a winner-take-all competition, so that only a single neuron is active at a steady state. Here we show how to organize lateral inhibition so that groups of neurons compete to be active. Given a collection of potentially overlapping groups, the inhibitory connectivity is set by a formula that can be interpreted as arising from a simple learning rule. Our analysis demonstrates that such inhibition generally results in winner-take-all competition between the given groups, with the exception of some degenerate cases. In a broader context, the network serves as a particular illustration of the general distinction between permitted and forbidden sets, which was introduced recently. From this viewpoint, the computational function of our network is to store and retrieve memories as permitted sets of coactive neurons.
UR - http://www.scopus.com/inward/record.url?scp=84898978080&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84898978080&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84898978080
SN - 0262122413
SN - 9780262122412
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 13 - Proceedings of the 2000 Conference, NIPS 2000
PB - Neural information processing systems foundation
T2 - 14th Annual Neural Information Processing Systems Conference, NIPS 2000
Y2 - 27 November 2000 through 2 December 2000
ER -