Learning Transformations

Qiang Qiu, Guillermo Sapiro

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A low-rank transformation learning framework for subspace clustering and classification is here proposed. Many high-dimensional data, such as face images and motion sequences, approximately lie in a union of low-dimensional subspaces. The corresponding subspace clustering problem has been extensively studied in the literature, partitioning such high-dimensional data into clusters corresponding to their underlying low-dimensional subspaces. However, low-dimensional intrinsic structures are often violated for real-world observations, as they can be corrupted by errors or deviate from ideal models. We propose to address this by learning a linear transformation on subspaces using matrix rank, via its convex surrogate nuclear norm, as the optimization criteria. The learned linear transformation restores a low-rank structure for data from the same subspace, and, at the same time, forces a high-rank structure for data from different subspaces. In this way, we reduce variations within the subspaces, and increase separation between the subspaces for improved subspace clustering and classification.

Original languageEnglish (US)
Title of host publication2014 IEEE International Conference on Image Processing, ICIP 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4008-4012
Number of pages5
ISBN (Electronic)9781479957514
DOIs
StatePublished - Jan 28 2014
Externally publishedYes

Publication series

Name2014 IEEE International Conference on Image Processing, ICIP 2014

All Science Journal Classification (ASJC) codes

  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Learning Transformations'. Together they form a unique fingerprint.

Cite this