TY - GEN
T1 - Learning to order things
AU - Cohen, William W.
AU - Schapire, Robert E.
AU - Singer, Yoram
PY - 1998
Y1 - 1998
N2 - There are many applications in which it is desirable to order rather than classify instances. Here wc consider the problem of learning how to order, given feedback in the form of prefcrencc judgments, i.e., statements to the effect that one instance should be ranked ahead of another. We outline a two-stage approach in which one first learns by conventional means a preference function, of the form PREF(u, v), which indicates whether it is advisable to rank u before v. New instances are then ordered so as to maximize agreements with the learned preference function. We show that the problem of finding the ordering that agrees best with a preference function is NP-complete, even under very restrictive assumptions. Nevertheless, we describe a simple greedy algorithm that is guaranteed to find a good approximation. We then discuss an on-line learning algorithm, based on the "Hedge" algorithm, for finding a good linear combination of ranking "experts." We use the ordering algorithm combined with the on-line learning algorithm to find a combination of "search experts/' each of which is a domain-specific query expansion strategy for a WWW search engine, and present experimental results that demonstrate the merits of our approach.
AB - There are many applications in which it is desirable to order rather than classify instances. Here wc consider the problem of learning how to order, given feedback in the form of prefcrencc judgments, i.e., statements to the effect that one instance should be ranked ahead of another. We outline a two-stage approach in which one first learns by conventional means a preference function, of the form PREF(u, v), which indicates whether it is advisable to rank u before v. New instances are then ordered so as to maximize agreements with the learned preference function. We show that the problem of finding the ordering that agrees best with a preference function is NP-complete, even under very restrictive assumptions. Nevertheless, we describe a simple greedy algorithm that is guaranteed to find a good approximation. We then discuss an on-line learning algorithm, based on the "Hedge" algorithm, for finding a good linear combination of ranking "experts." We use the ordering algorithm combined with the on-line learning algorithm to find a combination of "search experts/' each of which is a domain-specific query expansion strategy for a WWW search engine, and present experimental results that demonstrate the merits of our approach.
UR - http://www.scopus.com/inward/record.url?scp=28444495042&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=28444495042&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:28444495042
SN - 0262100762
SN - 9780262100762
T3 - Advances in Neural Information Processing Systems
SP - 451
EP - 457
BT - Advances in Neural Information Processing Systems 10 - Proceedings of the 1997 Conference, NIPS 1997
PB - Neural information processing systems foundation
T2 - 11th Annual Conference on Neural Information Processing Systems, NIPS 1997
Y2 - 1 December 1997 through 6 December 1997
ER -