Abstract
The problem of learning graphons has attracted considerable attention across several scientific communities, with significant progress over the recent years in sparser regimes. Yet, the current techniques still require diverging degrees in order to succeed with efficient algorithms in the challenging cases where the local structure of the graph is homogeneous. This paper provides an efficient algorithm to learn graphons in the constant expected degree regime. The algorithm is shown to succeed in estimating the rank-k projection of a graphon in the L2 metric if the top k eigenvalues of the graphon satisfy a generalized Kesten-Stigum condition.
Original language | English (US) |
---|---|
Pages (from-to) | 599-623 |
Number of pages | 25 |
Journal | Annals of Statistics |
Volume | 51 |
Issue number | 2 |
DOIs | |
State | Published - Apr 2023 |
All Science Journal Classification (ASJC) codes
- Statistics and Probability
- Statistics, Probability and Uncertainty
Keywords
- Inference on networks
- graphon
- spectral algorithm