TY - GEN
T1 - Learning Rewards from Linguistic Feedback
AU - Sumers, Theodore R.
AU - Ho, Mark K.
AU - Hawkins, Robert D.
AU - Narasimhan, Karthik
AU - Griffiths, Thomas L.
N1 - Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2021
Y1 - 2021
N2 - We explore unconstrained natural language feedback as a learning signal for artificial agents. Humans use rich and varied language to teach, yet most prior work on interactive learning from language assumes a particular form of input (e.g., commands). We propose a general framework which does not make this assumption, instead using aspect-based sentiment analysis to decompose feedback into sentiment over the features of a Markov decision process. We then infer the teacher’s reward function by regressing the sentiment on the features, an analogue of inverse reinforcement learning. To evaluate our approach, we first collect a corpus of teaching behavior in a cooperative task where both teacher and learner are human. We implement three artificial learners: sentiment-based “literal” and “pragmatic” models, and an inference network trained end-to-end to predict rewards. We then re-run our initial experiment, pairing human teachers with these artificial learners. All three models successfully learn from interactive human feedback. The inference network approaches the performance of the “literal” sentiment model, while the “pragmatic” model nears human performance. Our work provides insight into the information structure of naturalistic linguistic feedback as well as methods to leverage it for reinforcement learning.
AB - We explore unconstrained natural language feedback as a learning signal for artificial agents. Humans use rich and varied language to teach, yet most prior work on interactive learning from language assumes a particular form of input (e.g., commands). We propose a general framework which does not make this assumption, instead using aspect-based sentiment analysis to decompose feedback into sentiment over the features of a Markov decision process. We then infer the teacher’s reward function by regressing the sentiment on the features, an analogue of inverse reinforcement learning. To evaluate our approach, we first collect a corpus of teaching behavior in a cooperative task where both teacher and learner are human. We implement three artificial learners: sentiment-based “literal” and “pragmatic” models, and an inference network trained end-to-end to predict rewards. We then re-run our initial experiment, pairing human teachers with these artificial learners. All three models successfully learn from interactive human feedback. The inference network approaches the performance of the “literal” sentiment model, while the “pragmatic” model nears human performance. Our work provides insight into the information structure of naturalistic linguistic feedback as well as methods to leverage it for reinforcement learning.
UR - http://www.scopus.com/inward/record.url?scp=85125786611&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85125786611&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85125786611
T3 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
SP - 6002
EP - 6010
BT - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
PB - Association for the Advancement of Artificial Intelligence
T2 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
Y2 - 2 February 2021 through 9 February 2021
ER -