Abstract
We present an efficient and practical algorithm for the online prediction of discrete-time linear dynamical systems with a symmetric transition matrix. We circumvent the non-convex optimization problem using improper learning: carefully overparameterize the class of LDSs by a polylogarithmic factor, in exchange for convexity of the loss functions. From this arises a polynomial-time algorithm with a near-optimal regret guarantee, with an analogous sample complexity bound for agnostic learning. Our algorithm is based on a novel filtering technique, which may be of independent interest: we convolve the time series with the eigenvectors of a certain Hankel matrix.
Original language | English (US) |
---|---|
Pages (from-to) | 6703-6713 |
Number of pages | 11 |
Journal | Advances in Neural Information Processing Systems |
Volume | 2017-December |
State | Published - 2017 |
Event | 31st Annual Conference on Neural Information Processing Systems, NIPS 2017 - Long Beach, United States Duration: Dec 4 2017 → Dec 9 2017 |
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Information Systems
- Signal Processing