Learning linear dynamical systems via spectral filtering

Elad Hazan, Karan Singh, Cyril Zhang

Research output: Contribution to journalConference articlepeer-review

63 Scopus citations

Abstract

We present an efficient and practical algorithm for the online prediction of discrete-time linear dynamical systems with a symmetric transition matrix. We circumvent the non-convex optimization problem using improper learning: carefully overparameterize the class of LDSs by a polylogarithmic factor, in exchange for convexity of the loss functions. From this arises a polynomial-time algorithm with a near-optimal regret guarantee, with an analogous sample complexity bound for agnostic learning. Our algorithm is based on a novel filtering technique, which may be of independent interest: we convolve the time series with the eigenvectors of a certain Hankel matrix.

Original languageEnglish (US)
Pages (from-to)6703-6713
Number of pages11
JournalAdvances in Neural Information Processing Systems
Volume2017-December
StatePublished - 2017
Event31st Annual Conference on Neural Information Processing Systems, NIPS 2017 - Long Beach, United States
Duration: Dec 4 2017Dec 9 2017

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Learning linear dynamical systems via spectral filtering'. Together they form a unique fingerprint.

Cite this