Abstract
The visual richness of computer graphics applications is frequently limited by the difficulty of obtaining high-quality, detailed 3D models. This paper proposes a method for realistically transferring details (specifically, displacement maps) from existing high-quality 3D models to simple shapes that may be created with easy-to-learn modeling tools. Our key insight is to use metric learning to find a combination of geometric features that successfully predicts detail-map similarities on the source mesh; we use the learned feature combination to drive the detail transfer. The latter uses a variant of multi-resolution non-parametric texture synthesis, augmented by a high-frequency detail transfer step in texture space. We demonstrate that our technique can successfully transfer details among a variety of shapes including furniture and clothing.
Original language | English (US) |
---|---|
Pages (from-to) | 361-373 |
Number of pages | 13 |
Journal | Computer Graphics Forum |
Volume | 36 |
Issue number | 2 |
DOIs | |
State | Published - May 2017 |
All Science Journal Classification (ASJC) codes
- Computer Graphics and Computer-Aided Design