Learning compressed transforms with low displacement rank

Anna T. Thomas, Albert Gu, Tri Dao, Atri Rudra, Christopher Ré

Research output: Contribution to journalConference articlepeer-review

25 Scopus citations

Abstract

The low displacement rank (LDR) framework for structured matrices represents a matrix through two displacement operators and a low-rank residual. Existing use of LDR matrices in deep learning has applied fixed displacement operators encoding forms of shift invariance akin to convolutions. We introduce a class of LDR matrices with more general displacement operators, and explicitly learn over both the operators and the low-rank component. This class generalizes several previous constructions while preserving compression and efficient computation. We prove bounds on the VC dimension of multi-layer neural networks with structured weight matrices and show empirically that our compact parameterization can reduce the sample complexity of learning. When replacing weight layers in fully-connected, convolutional, and recurrent neural networks for image classification and language modeling tasks, our new classes exceed the accuracy of existing compression approaches, and on some tasks also outperform general unstructured layers while using more than 20x fewer parameters.

Original languageEnglish (US)
Pages (from-to)9052-9060
Number of pages9
JournalAdvances in Neural Information Processing Systems
Volume2018-December
StatePublished - 2018
Externally publishedYes
Event32nd Conference on Neural Information Processing Systems, NeurIPS 2018 - Montreal, Canada
Duration: Dec 2 2018Dec 8 2018

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Learning compressed transforms with low displacement rank'. Together they form a unique fingerprint.

Cite this