Learning Bandwidth Expansion Using Perceptually-motivated Loss

Berthy Feng, Zeyu Jin, Jiaqi Su, Adam Finkelstein

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

We introduce a perceptually motivated approach to bandwidth expansion for speech. Our method pairs a new 3-way split variant of the FFTNet neural vocoder structure with a perceptual loss function, combining objectives from both the time and frequency domains. Mean opinion score tests show that it outperforms baseline methods from both domains, even for extreme bandwidth expansion.

Original languageEnglish (US)
Title of host publication2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages606-610
Number of pages5
ISBN (Electronic)9781479981311
DOIs
StatePublished - May 2019
Event44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom
Duration: May 12 2019May 17 2019

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2019-May
ISSN (Print)1520-6149

Conference

Conference44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
CountryUnited Kingdom
CityBrighton
Period5/12/195/17/19

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Keywords

  • audio super resolution
  • Bandwidth expansion
  • bandwidth extension
  • deep learning

Fingerprint Dive into the research topics of 'Learning Bandwidth Expansion Using Perceptually-motivated Loss'. Together they form a unique fingerprint.

Cite this