TY - GEN
T1 - LEARN Codes
T2 - 2019 IEEE International Conference on Communications, ICC 2019
AU - Jiang, Yihan
AU - Kim, Hyeji
AU - Asnani, Himanshu
AU - Kannan, Sreeram
AU - Oh, Sewoong
AU - Viswanath, Pramod
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/5
Y1 - 2019/5
N2 - Designing channel codes under low latency constraints is one of the most demanding requirements in 5G standards. However, sharp characterizations of the performances of traditional codes are only available in the large block lengths limit. Code designs are guided by those asymptotic analyses and require large block lengths and long latency to achieve the desired error rate. Furthermore, when the codes designed for one channel (e.g. Additive White Gaussian Noise (AWGN) channel) are used for another (e.g. non-AWGN channels), heuristics are necessary to achieve any non trivial performance thereby severely lacking in robustness as well as adaptivity. Obtained by jointly designing recurrent neural network (RNN) based encoder and decoder, we propose an end-to-end learned neural code which outperforms canonical convolutional code under block settings. With this gained experience of designing a novel neural block code, we propose a new class of codes under low latency constraint Low-latency Efficient Adaptive Robust Neural (LEARN) codes, which outperform the state-of-the-art low latency codes as well as exhibit robustness and adaptivity properties. LEARN codes show the potential of designing new versatile and universal codes for future communications via tools of modern deep learning coupled with communication engineering insights.
AB - Designing channel codes under low latency constraints is one of the most demanding requirements in 5G standards. However, sharp characterizations of the performances of traditional codes are only available in the large block lengths limit. Code designs are guided by those asymptotic analyses and require large block lengths and long latency to achieve the desired error rate. Furthermore, when the codes designed for one channel (e.g. Additive White Gaussian Noise (AWGN) channel) are used for another (e.g. non-AWGN channels), heuristics are necessary to achieve any non trivial performance thereby severely lacking in robustness as well as adaptivity. Obtained by jointly designing recurrent neural network (RNN) based encoder and decoder, we propose an end-to-end learned neural code which outperforms canonical convolutional code under block settings. With this gained experience of designing a novel neural block code, we propose a new class of codes under low latency constraint Low-latency Efficient Adaptive Robust Neural (LEARN) codes, which outperform the state-of-the-art low latency codes as well as exhibit robustness and adaptivity properties. LEARN codes show the potential of designing new versatile and universal codes for future communications via tools of modern deep learning coupled with communication engineering insights.
UR - http://www.scopus.com/inward/record.url?scp=85070200458&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85070200458&partnerID=8YFLogxK
U2 - 10.1109/ICC.2019.8761286
DO - 10.1109/ICC.2019.8761286
M3 - Conference contribution
AN - SCOPUS:85070200458
T3 - IEEE International Conference on Communications
BT - 2019 IEEE International Conference on Communications, ICC 2019 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 20 May 2019 through 24 May 2019
ER -