Leakage risks of geologic CO2 storage and the impacts on the global energy system and climate change mitigation

Hang Deng, Jeffrey M. Bielicki, Michael Oppenheimer, Jeffrey P. Fitts, Catherine A. Peters

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

This study investigated how subsurface and atmospheric leakage from geologic CO2 storage reservoirs could impact the deployment of Carbon Capture and Storage (CCS) in the global energy system. The Leakage Risk Monetization Model was used to estimate the costs of leakage for representative CO2 injection scenarios, and these costs were incorporated into the Global Change Assessment Model. Worst-case scenarios of CO2 leakage risk, which assume that all leakage pathway permeabilities are extremely high, were simulated. Even with this extreme assumption, the associated costs of monitoring, treatment, containment, and remediation resulted in minor shifts in the global energy system. For example, the reduction in CCS deployment in the electricity sector was 3% for the “high” leakage scenario, with replacement coming from fossil fuel and biomass without CCS, nuclear power, and renewable energy. In other words, the impact on CCS deployment under a realistic leakage scenario is likely to be negligible. We also quantified how the resulting shifts will impact atmospheric CO2 concentrations. Under a carbon tax that achieves an atmospheric CO2 concentration of 480 ppm in 2100, technology shifts due to leakage costs would increase this concentration by less than 5 ppm. It is important to emphasize that this increase does not result from leaked CO2 that reaches the land surface, which is minimal due to secondary trapping in geologic strata above the storage reservoir. The overall conclusion is that leakage risks and associated costs will likely not interfere with the effectiveness of policies for climate change mitigation.

Original languageEnglish (US)
Pages (from-to)151-163
Number of pages13
JournalClimatic Change
Volume144
Issue number2
DOIs
StatePublished - Sep 1 2017

All Science Journal Classification (ASJC) codes

  • Global and Planetary Change
  • Atmospheric Science

Keywords

  • Carbon capture, utilization and storage
  • Carbon tax
  • Climate change mitigation
  • GCAM
  • Geologic CO storage
  • Integrated assessment modeling
  • Leakage risk
  • Representative concentration pathways

Fingerprint Dive into the research topics of 'Leakage risks of geologic CO<sub>2</sub> storage and the impacts on the global energy system and climate change mitigation'. Together they form a unique fingerprint.

Cite this