Latent patient cluster discovery for robust future forecasting and new-patient generalization

Ting Qian, Aaron J. Masino

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Commonly referred to as predictive modeling, the use of machine learning and statistical methods to improve healthcare outcomes has recently gained traction in biomedical informatics research. Given the vast opportunities enabled by large Electronic Health Records (EHR) data and powerful resources for conducting predictive modeling, we argue that it is yet crucial to first carefully examine the prediction task and then choose predictive methods accordingly. Specifically, we argue that there are at least three distinct prediction tasks that are often conflated in biomedical research: 1) data imputation, where a model fills in the missing values in a dataset, 2) future forecasting, where a model projects the development of a medical condition for a known patient based on existing observations, and 3) newpatient generalization, where a model transfers the knowledge learned from previously observed patients to newly encountered ones. Importantly, the latter two tasks-future forecasting and new-patient generalizations-tend to be more difficult than data imputation as they require predictions to be made on potentially out-of-sample data (i.e., data following a different predictable pattern from what has been learned by the model). Using hearing loss progression as an example, we investigate three regression models and show that the modeling of latent clusters is a robust method for addressing the more challenging prediction scenarios. Overall, our findings suggest that there exist significant differences between various kinds of prediction tasks and that it is important to evaluate the merits of a predictive model relative to the specific purpose of a prediction task.

Original languageEnglish (US)
Article numbere0162812
JournalPloS one
Volume11
Issue number9
DOIs
StatePublished - Sep 2016
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Latent patient cluster discovery for robust future forecasting and new-patient generalization'. Together they form a unique fingerprint.

Cite this