Laser processing of polymer thin for chemical sensor applications

A. Piqúe, R. C.Y. Auyeung, J. L. Stepnowski, D. W. Weir, C. B. Arnold, R. A. McGill, D. B. Chrisey

Research output: Contribution to journalArticle

76 Scopus citations

Abstract

Contemporary and next-generation commercial and defense-related platforms offer countless applications for thin-film polymer coatings, including the areas of microelectronics, optoelectronics, and miniature chemical and biological sensors. In many cases, the compositional and structural complexity, and the anisotropy of the material properties preclude the processing of many of these polymers by conventional physical or chemical vapor deposition methods. The Naval Research Laboratory has developed several advanced laser-based processing techniques for depositing polymer thin films for a variety of structures and devices. The two techniques detailed in this work, matrix-assisted pulsed laser evaporation (MAPLE) and MAPLE direct-write (MAPLE DW), are based on the concept of laser absorption by a matrix solution consisting of a solvent and the desired polymer. MAPLE is a physical vapor deposition process that takes place inside a vacuum chamber, while MAPLE DW is a laser forward-transfer process that is carried out under atmospheric conditions. Both processes have been successfully used in the fabrication of thin films and structures of a range of organic materials and systems. Examples of their use in the fabrication of two types of chemical sensors, together with a comparison of the performance of these laser-processed sensors and that of similar sensors made by traditionaltechniques are provided.

Original languageEnglish (US)
Pages (from-to)293-299
Number of pages7
JournalSurface and Coatings Technology
Volume163-164
DOIs
StatePublished - Jan 30 2003
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Materials Chemistry

Keywords

  • Chemical sensors
  • Chemiresistor
  • Laser forward transfer
  • Matrix assisted pulsed laser evaporation
  • Polymer thin films
  • SAW resonators

Fingerprint Dive into the research topics of 'Laser processing of polymer thin for chemical sensor applications'. Together they form a unique fingerprint.

  • Cite this

    Piqúe, A., Auyeung, R. C. Y., Stepnowski, J. L., Weir, D. W., Arnold, C. B., McGill, R. A., & Chrisey, D. B. (2003). Laser processing of polymer thin for chemical sensor applications. Surface and Coatings Technology, 163-164, 293-299. https://doi.org/10.1016/S0257-8972(02)00606-0