Abstract
We are using a laser engineering approach to develop and optimize hydrous ruthenium dioxide (RuOxHy or RuO2·0.5 H2O) pseudocapacitors. We employ a novel laser forward transfer process, Matrix Assisted Pulsed Laser Evaporation Direct Write (MAPLE-DW), in combination with UV laser machining, to fabricate mesoscale pseudocapacitors and microbatteries under ambient temperature and atmospheric conditions. Thin films with the desired high surface area morphology are obtained without compromising their electrochemical performance. The highest capacitance structures are achieved by depositing mixtures of sulfuric acid with the RuO2·0.5 H2O electrode material. Our pseudocapacitors exhibit linear discharge behavior and their properties scale proportionately when assembled in parallel and series configurations.
Original language | English (US) |
---|---|
Pages (from-to) | 275-280 |
Number of pages | 6 |
Journal | Materials Research Society Symposium - Proceedings |
Volume | 698 |
State | Published - 2002 |
Externally published | Yes |
Event | Electronactive Polymers and Rapid Prototyping - Boston, MA, United States Duration: Nov 26 2001 → Nov 30 2001 |
All Science Journal Classification (ASJC) codes
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering