Abstract
We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.
Original language | English (US) |
---|---|
Article number | 136002 |
Journal | Physical review letters |
Volume | 119 |
Issue number | 13 |
DOIs | |
State | Published - Sep 29 2017 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy(all)
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Large-Scale Structure and Hyperuniformity of Amorphous Ices'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Physical review letters, Vol. 119, No. 13, 136002, 29.09.2017.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Large-Scale Structure and Hyperuniformity of Amorphous Ices
AU - Martelli, Fausto
AU - Torquato, Salvatore
AU - Giovambattista, Nicolas
AU - Car, Roberto
N1 - Funding Information: By analyzing the long wavelength density fluctuations of LDA and HDA generated with classical molecular dynamics simulations, we found that both amorphous ices are nearly hyperuniform and have a similar degree of hyperuniformity. This suggests that they should possess similar long-range order in spite of their clear differences at the short- and intermediate-range scales independently of the preparation protocol followed to produce HDA. In correspondence with the transformation of I h to HDA and of LDA to HDA, the applied pressure produces clusters of spatially nearly uncorrelated heterogeneities that destroy hyperuniformity. When this occurs, the samples become hyposurficial as density fluctuations that grow like the surface area of the observation window are absent. Hyposurficiality is a static signature that should be inspected whenever a first-order PT is involved, which, to our knowledge, was never previously observed as a signature of phase coexistence in any context. The sudden appearance of hyposurficiality, the discontinuous profile of the translational order metric τ , and the spike of H in correspondence with the PTs, lead us to conclude that the observed I h -to-HDA and LDA-to-HDA transformations are of the first kind. The first-order nature of the LDA-to-HDA metastable phase transition makes conceivable the existence of a second critical point in our model of water. An additional important finding of our investigation is that the large-scale density fluctuations keep decreasing well below T gt and T gr , i.e., well below the temperature of freezing of diffusional and rotational motion, challenging the notion of glasses as kinetically arrested liquids. Our results also indicate that the degree of hyperuniformity of a glass is affected by vibrational motion and, in particular, that not all glasses are hyperuniform. Finally, we propose that away from criticality, the ratio A / B could provide a useful metric to gauge the degree of volume to surface-area fluctuations, which include hyperuniform and hyposurficial systems at the extremes. F. M. and R. C. acknowledge the Department of Energy (DOE), Award No. DE-SC0008626. S. T. was supported by the National Science Foundation under Award No. DMR-1714722. [1] 1 S. Torquato and F. H. Stillinger , Phys. Rev. E 68 , 041113 ( 2003 ). PRESCM 1539-3755 10.1103/PhysRevE.68.041113 [2] 2 See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.119.136002 for the mathematical definition of α ( r , R ) and for additional analyses of the simulation. [3] 3 C. E. Zachary and S. Torquato , J. Stat. Mech. ( 2009 ) P12015 . JSMTC6 1742-5468 10.1088/1742-5468/2009/12/P12015 [4] Upon ensemble average over many configurations, one can average h ( r ) over orientations of r obtaining a total correlation function that depends on r = | r | . Moreover, it is worthy to note that the definition in Eq. (3) removes any forward scattering contribution, which is always omitted in the definition of hyperuniformity. [5] 5 S. Torquato , G. Zhang , and F. H. Stillinger , Phys. Rev. X 5 , 021020 ( 2015 ). PRXHAE 2160-3308 10.1103/PhysRevX.5.021020 [6] 6 A. Donev , F. H. Stillinger , and S. Torquato , Phys. Rev. Lett. 95 , 090604 ( 2005 ). PRLTAO 0031-9007 10.1103/PhysRevLett.95.090604 [7] 7 Y. Jiao , T. Lau , H. Hatzikirou , M. Meyer-Hermann , J. C. Corbo , and S. Torquato , Phys. Rev. E 89 , 022721 ( 2014 ). PRESCM 1539-3755 10.1103/PhysRevE.89.022721 [8] 8 L. Pietronero , A. Gabrielli , and F. S. Labini , Physica (Amsterdam) 306A , 395 ( 2002 ). PHYADX 0378-4371 10.1016/S0378-4371(02)00517-4 [9] 9 R. Xie , G. G. Long , S. J. Weigand , S. C. Moss , T. Carvalho , S. Roorda , M. Hejna , S. Torquato , and P. J. Steinhardt , Proc. Natl. Acad. Sci. U.S.A. 110 , 13250 ( 2013 ). PNASA6 0027-8424 10.1073/pnas.1220106110 [10] 10 M. Hejna , P. J. Steinhardt , and S. Torquato , Phys. Rev. B 87 , 245204 ( 2013 ). PRBMDO 1098-0121 10.1103/PhysRevB.87.245204 [11] 11 M. Florescu , S. Torquato , and P. J. Steinhardt , Proc. Natl. Acad. Sci. U.S.A. 106 , 20658 ( 2009 ). PNASA6 0027-8424 10.1073/pnas.0907744106 [12] 12 W. Man , M. Florescu , E. P. Williamson , Y. He , S. R. Hashemizad , B. Y. C. Leung , D. R. Liner , S. Torquato , P. M. Chaikin , and P. J. Steinhardt , Proc. Natl. Acad. Sci. U.S.A. 110 , 15886 ( 2013 ). PNASA6 0027-8424 10.1073/pnas.1307879110 [13] 13 G. Zito , G. Rusciano , G. Pesce , A. Malafronte , R. Girolamo , G. Ausanio , A. Vecchione , and A. Sasso , Phys. Rev. E 92 , 050601(R) ( 2015 ). PRESCM 1539-3755 10.1103/PhysRevE.92.050601 [14] 14 A. Chremos and J. F. Douglas , Ann. Phys. (Amsterdam) 529 , 1600342 ( 2017 ). APNYA6 0003-4916 10.1002/andp.201600342 [15] 15 G. Zhang , F. H. Stillinger , and S. Torquato , Sci. Rep. 6 , 36963 ( 2016 ). SRCEC3 2045-2322 10.1038/srep36963 [16] 16 T. Goldfriend , H. Diamant , and T. A. Witten , Phys. Rev. Lett. 118 , 158005 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.158005 [17] 17 S. Atkinson , G. Zhang , A. B. Hopkins , and S. Torquato , Phys. Rev. E 94 , 012902 ( 2016 ). PRESCM 2470-0045 10.1103/PhysRevE.94.012902 [18] 18 J. L. F. Abascal and C. Vega , J. Chem. Phys. 123 , 234505 ( 2005 ). JCPSA6 0021-9606 10.1063/1.2121687 [19] 19 J. Wong , D. A. Jahn , and N. Giovambattista , J. Chem. Phys. 143 , 074501 ( 2015 ). JCPSA6 0021-9606 10.1063/1.4928435 [20] 20 O. Mishima and L. D. Calvert , Nature (London) 310 , 393 ( 1984 ). NATUAS 0028-0836 10.1038/310393a0 [21] 21 O. Mishima , L. D. Calvert , and E. Whalley , Nature (London) 314 , 76 ( 1985 ). NATUAS 0028-0836 10.1038/314076a0 [22] 22 K. Koga , H. Tanaka , and X. C. Zeng , Nature (London) 408 , 564 ( 2000 ). NATUAS 0028-0836 10.1038/35046035 [23] 23 S. Klotz , T. Strässle , G. Hamel , R. J. Nelmes , J. S. Loveday , G. Hamel , G. Rousse , B. Canny , J. C. Chervin , and A. M. Saitta , Phys. Rev. Lett. 94 , 025506 ( 2005 ). PRLTAO 0031-9007 10.1103/PhysRevLett.94.025506 [24] 24 J. L. F. Abascal and C. Vega , J. Chem. Phys. 133 , 234502 ( 2010 ). JCPSA6 0021-9606 10.1063/1.3506860 [25] 25 R. S. Singh , J. W. Biddle , M. A. Anisimov , and P. G. Debenedetti , J. Chem. Phys. 144 , 144504 ( 2016 ). JCPSA6 0021-9606 10.1063/1.4944986 [26] 26 P. G. Debenedetti , J. Phys. Condens. Matter 15 , R1669 ( 2003 ). JCOMEL 0953-8984 10.1088/0953-8984/15/45/R01 [27] 27 T. Loerting and N. Giovambattista , J. Phys. Condens. Matter 18 , R919 ( 2006 ). JCOMEL 0953-8984 10.1088/0953-8984/18/50/R01 [28] 28 O. Mishima and H. E. Stanley , Nature (London) 396 , 329 ( 1998 ). NATUAS 0028-0836 10.1038/24540 [29] 29 T. Loerting , V. Fuentes-Landetea , P. H. Handlea , M. Seidl , K. Amann-Winkel , C. Gainaru , and R. Bohme , J. Non-Cryst. Solids 407 , 423 ( 2015 ). JNCSBJ 0022-3093 10.1016/j.jnoncrysol.2014.09.003 [30] 30 K. Amann-Winkel , R. Bohmer , F. Fujara , C. Gainaru , B. Geil , and T. Loerting , Rev. Mod. Phys. 88 , 011002 ( 2016 ). RMPHAT 0034-6861 10.1103/RevModPhys.88.011002 [31] 31 T. Loerting , C. Salzmann , I. Kohl , E. Mayer , and A. Hallbrucker , Phys. Chem. Chem. Phys. 3 , 5355 ( 2001 ). PPCPFQ 1463-9076 10.1039/b108676f [32] 32 C. A. Tulk , C. J. Benmore , L. Urquidi , D. D. Klug , J. Neuefeing , B. Tomberli , and P. A. Egelstaff , Science 297 , 1320 ( 2002 ). SCIEAS 0036-8075 10.1126/science.1074178 [33] 33 J. L. Finney , A. Hallbrucker , I. Kohl , A. K. Soper , and D. T. Bowron , Phys. Rev. Lett. 88 , 225503 ( 2002 ). PRLTAO 0031-9007 10.1103/PhysRevLett.88.225503 [34] 34 K. Winkel , E. Mayer , and T. Loerting , J. Phys. Chem. B 115 , 14141 ( 2011 ). JPCBFK 1520-6106 10.1021/jp203985w [35] The upper integration limit is defined by the reciprocal vectors associated to the natural periodicity of I h in units of the reciprocal lattice vectors of the sample supercell. [36] 36 A. K. Soper and M. A. Ricci , Phys. Rev. Lett. 84 , 2881 ( 2000 ). PRLTAO 0031-9007 10.1103/PhysRevLett.84.2881 [37] 37 E. Shiratani and M. Sasai , J. Chem. Phys. 104 , 7671 ( 1996 ). JCPSA6 0021-9606 10.1063/1.471475 [38] 38 E. Shiratani and M. Sasai , J. Chem. Phys. 108 , 3264 ( 1998 ). JCPSA6 0021-9606 10.1063/1.475723 [39] 39 R. Martoňak , D. Donadio , and M. Parrinello , J. Chem. Phys. 122 , 134501 ( 2005 ). JCPSA6 0021-9606 10.1063/1.1870852 [40] 40 J. A. Sellberg , Nature (London) 510 , 381 ( 2014 ). NATUAS 0028-0836 10.1038/nature13266 [41] 41 K. T. Wikfeldt , A. Nilsson , and L. G. M. Pettersson , Phys. Chem. Chem. Phys. 13 , 19918 ( 2011 ). PPCPFQ 1463-9076 10.1039/c1cp22076d [42] 42 D. Dhabal , K. T. Wikfeldt , L. B. Skinner , C. Chakravarty , and H. K. Kashyap , Phys. Chem. Chem. Phys. 19 , 3265 ( 2017 ). PPCPFQ 1463-9076 10.1039/C6CP07599A [43] 43 G. N. I. Clark , C. R. Cappa , J. D. Smith , R. J. Saykally , and T. Head-Gordon , Mol. Phys. 108 , 1415 ( 2010 ). MOPHAM 0026-8976 10.1080/00268971003762134 [44] 44 F. Martelli , H.-Y. Ko , E. C. Oğuz , and R. Car , arXiv:1609.03123 . Publisher Copyright: © 2017 American Physical Society.
PY - 2017/9/29
Y1 - 2017/9/29
N2 - We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.
AB - We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.
UR - http://www.scopus.com/inward/record.url?scp=85030154261&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85030154261&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.119.136002
DO - 10.1103/PhysRevLett.119.136002
M3 - Article
C2 - 29341697
AN - SCOPUS:85030154261
SN - 0031-9007
VL - 119
JO - Physical review letters
JF - Physical review letters
IS - 13
M1 - 136002
ER -