Abstract
We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (25-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO will detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter technology used in balloon-borne experiments (Welcome-1) and AstroE2 Hard X-ray Detector. PoGO consists of close-packed array of 397 hexagonal well-type phoswich counters. Each unit is composed of a long thin tube (well) of slow plastic scintillator, a solid rod of fast plastic scintillator, and a short BGO at the base. A photomultiplier coupled to the end of the BGO detects light from all 3 scintillators. The rods with decay times < 10 ns, are used as the active elements; while the wells and BGOs, with decay times ∼ 250 ns are used as active anti-coincidence. The fast and slow signals are separated out electronically. When gamma rays entering the field-of-view (fwhm∼ 3deg 2) strike a fast scintillator, some are Compton scattered. A fraction of the scattered photons are absorbed in another rod (or undergo a second scatter). A valid evnet requires one clean fast signal of pulse-height compatible with photo-absorption (> 20keV) and one or more compatible with Compton scattering (< 10keV). Studies based on EGS4 (with polarization features) and Geant4 predict excellent background rejection and high sensitivity.
Original language | English (US) |
---|---|
Article number | N46-6 |
Pages (from-to) | 1708-1713 |
Number of pages | 6 |
Journal | IEEE Nuclear Science Symposium Conference Record |
Volume | 3 |
State | Published - 2003 |
Event | 2003 IEEE Nuclear Science Symposium Conference Record - Nuclear Science Symposium, Medical Imaging Conference - Portland, OR, United States Duration: Oct 19 2003 → Oct 25 2003 |
All Science Journal Classification (ASJC) codes
- Radiation
- Nuclear and High Energy Physics
- Radiology Nuclear Medicine and imaging