TY - JOUR
T1 - Landau Modes are Eigenmodes of Stellar Systems in the Limit of Zero Collisions
AU - Ng, C. S.
AU - Bhattacharjee, A.
N1 - Publisher Copyright:
© 2021. The Author(s). Published by the American Astronomical Society.
PY - 2021/12/20
Y1 - 2021/12/20
N2 - We consider the spectrum of eigenmodes in a stellar system dominated by gravitational forces in the limit of zero collisions. We show analytically and numerically using the Lenard-Bernstein collision operator that the Landau modes, which are not true eigenmodes in a strictly collisionless system (except for the Jeans unstable mode), become part of the true eigenmode spectrum in the limit of zero collisions. Under these conditions, the continuous spectrum of true eigenmodes in a collisionless system, also known as the Case-van Kampen modes, is eliminated. Furthermore, because the background distribution function in a weakly collisional system can exhibit significant deviations from a Maxwellian distribution function over long times, we show that the spectrum of Landau modes can change drastically even in the presence of slight deviations from a Maxwellian, primarily through the appearance of weakly damped modes that may be otherwise heavily damped for a Maxwellian distribution. Our results provide important insights for developing statistical theories to describe thermal fluctuations in a stellar system, which are currently a subject of great interest for N-body simulations as well as observations of gravitational systems.
AB - We consider the spectrum of eigenmodes in a stellar system dominated by gravitational forces in the limit of zero collisions. We show analytically and numerically using the Lenard-Bernstein collision operator that the Landau modes, which are not true eigenmodes in a strictly collisionless system (except for the Jeans unstable mode), become part of the true eigenmode spectrum in the limit of zero collisions. Under these conditions, the continuous spectrum of true eigenmodes in a collisionless system, also known as the Case-van Kampen modes, is eliminated. Furthermore, because the background distribution function in a weakly collisional system can exhibit significant deviations from a Maxwellian distribution function over long times, we show that the spectrum of Landau modes can change drastically even in the presence of slight deviations from a Maxwellian, primarily through the appearance of weakly damped modes that may be otherwise heavily damped for a Maxwellian distribution. Our results provide important insights for developing statistical theories to describe thermal fluctuations in a stellar system, which are currently a subject of great interest for N-body simulations as well as observations of gravitational systems.
UR - http://www.scopus.com/inward/record.url?scp=85122931852&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85122931852&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ac31ae
DO - 10.3847/1538-4357/ac31ae
M3 - Article
AN - SCOPUS:85122931852
SN - 0004-637X
VL - 923
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 271
ER -