TY - GEN
T1 - Laminar flame speed, markstein length and flame chemistry of the butanol isomers from 1 atm to 5 atm
AU - Wu, Fujia
AU - Law, Chung K.
PY - 2013
Y1 - 2013
N2 - Laminar flame speeds and Markstein lengths for n-butanol, s-butanol, i-butanol and t-butanol at pressures from 1 atm to 5 atm were experimentally measured in a heated, dual-chamber vessel. Results at all pressures show that n-butanol has the highest flame speeds, followed by s-butanol and ibutanol, and then t-butanol, which quantitatively agree reasonably well with the computed results using the recent mechanism of Sarathy and co-authors. Results further show that while the isomers have different Markstein lengths, they have similar Markstein numbers which is the appropriate nondimensional parameter to quantify flame stretch. Investigations on thermal effects, reaction rate sensitivities, intermediate species distributions and reaction paths subsequently demonstrate that kinetic effect is the primary reason for the ordering of the flame speed. Specifically, since s-butanol, i-butanol and t-butanol all have branched molecular structures, they crack into relatively stable branched intermediate species, such as iso-butene, iso-propenol and acetone, with the resulting flame speeds depending on the extent of fuel molecule branching.
AB - Laminar flame speeds and Markstein lengths for n-butanol, s-butanol, i-butanol and t-butanol at pressures from 1 atm to 5 atm were experimentally measured in a heated, dual-chamber vessel. Results at all pressures show that n-butanol has the highest flame speeds, followed by s-butanol and ibutanol, and then t-butanol, which quantitatively agree reasonably well with the computed results using the recent mechanism of Sarathy and co-authors. Results further show that while the isomers have different Markstein lengths, they have similar Markstein numbers which is the appropriate nondimensional parameter to quantify flame stretch. Investigations on thermal effects, reaction rate sensitivities, intermediate species distributions and reaction paths subsequently demonstrate that kinetic effect is the primary reason for the ordering of the flame speed. Specifically, since s-butanol, i-butanol and t-butanol all have branched molecular structures, they crack into relatively stable branched intermediate species, such as iso-butene, iso-propenol and acetone, with the resulting flame speeds depending on the extent of fuel molecule branching.
UR - http://www.scopus.com/inward/record.url?scp=84943403750&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84943403750&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84943403750
T3 - 8th US National Combustion Meeting 2013
SP - 2516
EP - 2534
BT - 8th US National Combustion Meeting 2013
PB - Western States Section/Combustion Institute
T2 - 8th US National Combustion Meeting 2013
Y2 - 19 May 2013 through 22 May 2013
ER -