Lagrangian particle tracking in the atmospheric surface layer

Nicholas Conlin, Hannah Even, Nathaniel J. Wei, N. Agastya Balantrapu, Marcus Hultmark

Research output: Contribution to journalArticlepeer-review

Abstract

Field measurements in the atmospheric surface layer (ASL) are key to understanding turbulent exchanges in the atmosphere, such as fluxes of mass, water vapor, and momentum. However, current field measurement techniques are limited to single-point time series or large-scale flow field scans. Extending image-based laboratory measurement techniques to field-relevant scales is a promising route to more detailed atmospheric flow measurements, but this requires significant increases in the attainable measurement volume while keeping the spatiotemporal resolution high. Here, we present an adaptable particle tracking system using helium-filled soap bubbles, mirrorless cameras, and high-power LEDs enabling volumetric ASL field measurements. We conduct analyses pertinent to image-based field measurement systems and develop general guidelines for their design. We validate the particle tracking system in a field experiment. Single-point Eulerian velocity statistics are presented and compared to data from concurrently operated sonic anemometers. Lagrangian displacement statistics are also presented with a comparison to Taylor’s theory of dispersion. The system improves the state-of-the-art in field measurements in the lower atmosphere and enables unprecedented insights into flow in the ASL.

Original languageEnglish (US)
Article number095803
JournalMeasurement Science and Technology
Volume35
Issue number9
DOIs
StatePublished - Sep 2024
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Instrumentation
  • Engineering (miscellaneous)
  • Applied Mathematics

Keywords

  • atmospheric surface layer
  • particle tracking
  • turbulence

Fingerprint

Dive into the research topics of 'Lagrangian particle tracking in the atmospheric surface layer'. Together they form a unique fingerprint.

Cite this