### Abstract

We formulate a class of stochastic partial differential equations based on Kelvin’s circulation theorem for ideal fluids. In these models, the velocity field is randomly transported by white-noise vector fields, as well as by its own average over realizations of this noise. We call these systems the Lagrangian averaged stochastic advection by Lie transport (LA SALT) equations. These equations are nonlinear and non-local, in both physical and probability space. Before taking this average, the equations recover the Stochastic Advection by Lie Transport (SALT) fluid equations introduced by Holm (Proc R Soc A 471(2176):20140963, 2015). Remarkably, the introduction of the non-locality in probability space in the form of momentum transported by its own mean velocity gives rise to a closed equation for the expectation field which comprises Navier–Stokes equations with Lie–Laplacian ‘dissipation’. As such, this form of non-locality provides a regularization mechanism. The formalism we develop is closely connected to the stochastic Weber velocity framework of Constantin and Iyer (Commun Pure Appl Math 61(3):330–345, 2008) in the case when the noise correlates are taken to be the constant basis vectors in R^{3} and, thus, the Lie–Laplacian reduces to the usual Laplacian. We extend this class of equations to allow for advected quantities to be present and affect the flow through exchange of kinetic and potential energies. The statistics of the solutions for the LA SALT fluid equations are found to be changing dynamically due to an array of intricate correlations among the physical variables. The statistical properties of the LA SALT physical variables propagate as local evolutionary equations which when spatially integrated become dynamical equations for the variances of the fluctuations. Essentially, the LA SALT theory is a non-equilibrium stochastic linear response theory for fluctuations in SALT fluids with advected quantities.

Original language | English (US) |
---|---|

Pages (from-to) | 1304-1342 |

Number of pages | 39 |

Journal | Journal of Statistical Physics |

Volume | 179 |

Issue number | 5-6 |

DOIs | |

State | Published - Jun 1 2020 |

### All Science Journal Classification (ASJC) codes

- Statistical and Nonlinear Physics
- Mathematical Physics

## Fingerprint Dive into the research topics of 'Lagrangian Averaged Stochastic Advection by Lie Transport for Fluids'. Together they form a unique fingerprint.

## Cite this

*Journal of Statistical Physics*,

*179*(5-6), 1304-1342. https://doi.org/10.1007/s10955-020-02493-4