KO codes: inventing nonlinear encoding and decoding for reliable wireless communication via deep-learning

Ashok Vardhan Makkuva, Xiyang Liu, Mohammad Vahid Jamali, Hessam Mahdavifar, Sewoong Oh, Pramod Viswanath

Research output: Chapter in Book/Report/Conference proceedingConference contribution

17 Scopus citations

Abstract

Landmark codes underpin reliable physical layer communication, e.g., Reed-Muller, BCH, Convolution, Turbo, LDPC and Polar codes: each is a linear code and represents a mathematical breakthrough. The impact on humanity is huge: each of these codes has been used in global wireless communication standards (satellite, WiFi, cellular). Reliability of communication over the classical additive white Gaussian noise (AWGN) channel enables benchmarking and ranking of the different codes. In this paper, we construct KO codes, a computationaly efficient family of deep-learning driven (encoder, decoder) pairs that outperform the state-of-the-art reliability performance on the standardized AWGN channel. KO codes beat state-of-the-art Reed-Muller and Polar codes, under the low-complexity successive cancellation decoding, in the challenging short-to-medium block length regime on the AWGN channel. We show that the gains of KO codes are primarily due to the nonlinear mapping of information bits directly to transmit symbols (bypassing modulation) and yet possess an efficient, high performance decoder. The key technical innovation that renders this possible is design of a novel family of neural architectures inspired by the computation tree of the Kronecker Operation (KO) central to Reed-Muller and Polar codes. These architectures pave way for the discovery of a much richer class of hitherto unexplored nonlinear algebraic structures. The code is available at https://github.com/deepcomm/KOcodes.

Original languageEnglish (US)
Title of host publicationProceedings of the 38th International Conference on Machine Learning, ICML 2021
PublisherML Research Press
Pages7368-7378
Number of pages11
ISBN (Electronic)9781713845065
StatePublished - 2021
Externally publishedYes
Event38th International Conference on Machine Learning, ICML 2021 - Virtual, Online
Duration: Jul 18 2021Jul 24 2021

Publication series

NameProceedings of Machine Learning Research
Volume139
ISSN (Electronic)2640-3498

Conference

Conference38th International Conference on Machine Learning, ICML 2021
CityVirtual, Online
Period7/18/217/24/21

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'KO codes: inventing nonlinear encoding and decoding for reliable wireless communication via deep-learning'. Together they form a unique fingerprint.

Cite this