Abstract
Let Y be a closed three manifold with trivial first homology, and let K⊂Y be a knot. We give a description of the Heegaard Floer homology of integer surgeries on Y along K in terms of the filtered homotopy type of the knot invariant for K. As an illustration of these techniques, we calculate the Heegaard Floer homology groups of non trivial circle bundles over Riemann surfaces (with coefficients in Z/2Z).
Original language | English (US) |
---|---|
Pages (from-to) | 101-153 |
Number of pages | 53 |
Journal | Algebraic and Geometric Topology |
Volume | 8 |
Issue number | 1 |
DOIs | |
State | Published - 2008 |
All Science Journal Classification (ASJC) codes
- Geometry and Topology
Keywords
- Knot floer homology
- Surgery theory