TY - JOUR
T1 - Kinetics of radical intermediate formation and deoxynucleotide production in 3-aminotyrosine-substituted Escherichia coli ribonucleotide reductases
AU - Minnihan, Ellen C.
AU - Seyedsayamdost, Mohammad R.
AU - Uhlin, Ulla
AU - Stubbe, Joanne
PY - 2011/6/22
Y1 - 2011/6/22
N2 - Escherichia coli ribonucleotide reductase is an α2β2 complex and catalyzes the conversion of nucleoside 5′-diphosphates (NDPs) to 2′-deoxynucleotides (dNDPs). The reaction is initiated by the transient oxidation of an active-site cysteine (C439) in α2 by a stable diferric tyrosyl radical (Y122•) cofactor in β2. This oxidation occurs by a mechanism of long-range proton-coupled electron transfer (PCET) over 35 Å through a specific pathway of residues: Y 122•→ W48→ Y356 in β2 to Y731→ Y730→ C439 in α2. To study the details of this process, 3-aminotyrosine (NH2Y) has been site-specifically incorporated in place of Y356 of β. The resulting protein, Y356NH2Y-β2, and the previously generated proteins Y731NH2Y-α2 and Y 730NH2Y-α2 (NH2Y-RNRs) are shown to catalyze dNDP production in the presence of the second subunit, substrate (S), and allosteric effector (E) with turnover numbers of 0.2-0.7 s-1. Evidence acquired by three different methods indicates that the catalytic activity is inherent to NH2Y-RNRs and not the result of copurifying wt enzyme. The kinetics of formation of 3-aminotyrosyl radical (NH 2Y•) at position 356, 731, and 730 have been measured with all S/E pairs. In all cases, NH2Y• formation is biphasic (k fast of 9-46 s-1 and kslow of 1.5-5.0 s -1) and kinetically competent to be an intermediate in nucleotide reduction. The slow phase is proposed to report on the conformational gating of NH2Y• formation, while the kcat of ∼0.5 s -1 is proposed to be associated with rate-limiting oxidation by NH2Y• of the subsequent amino acid on the pathway during forward PCET. The X-ray crystal structures of Y730NH2Y-α2 and Y731NH2Y-α2 have been solved and indicate minimal structural changes relative to wt-α2. From the data, a kinetic model for PCET along the radical propagation pathway is proposed.
AB - Escherichia coli ribonucleotide reductase is an α2β2 complex and catalyzes the conversion of nucleoside 5′-diphosphates (NDPs) to 2′-deoxynucleotides (dNDPs). The reaction is initiated by the transient oxidation of an active-site cysteine (C439) in α2 by a stable diferric tyrosyl radical (Y122•) cofactor in β2. This oxidation occurs by a mechanism of long-range proton-coupled electron transfer (PCET) over 35 Å through a specific pathway of residues: Y 122•→ W48→ Y356 in β2 to Y731→ Y730→ C439 in α2. To study the details of this process, 3-aminotyrosine (NH2Y) has been site-specifically incorporated in place of Y356 of β. The resulting protein, Y356NH2Y-β2, and the previously generated proteins Y731NH2Y-α2 and Y 730NH2Y-α2 (NH2Y-RNRs) are shown to catalyze dNDP production in the presence of the second subunit, substrate (S), and allosteric effector (E) with turnover numbers of 0.2-0.7 s-1. Evidence acquired by three different methods indicates that the catalytic activity is inherent to NH2Y-RNRs and not the result of copurifying wt enzyme. The kinetics of formation of 3-aminotyrosyl radical (NH 2Y•) at position 356, 731, and 730 have been measured with all S/E pairs. In all cases, NH2Y• formation is biphasic (k fast of 9-46 s-1 and kslow of 1.5-5.0 s -1) and kinetically competent to be an intermediate in nucleotide reduction. The slow phase is proposed to report on the conformational gating of NH2Y• formation, while the kcat of ∼0.5 s -1 is proposed to be associated with rate-limiting oxidation by NH2Y• of the subsequent amino acid on the pathway during forward PCET. The X-ray crystal structures of Y730NH2Y-α2 and Y731NH2Y-α2 have been solved and indicate minimal structural changes relative to wt-α2. From the data, a kinetic model for PCET along the radical propagation pathway is proposed.
UR - http://www.scopus.com/inward/record.url?scp=79959241252&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79959241252&partnerID=8YFLogxK
U2 - 10.1021/ja201640n
DO - 10.1021/ja201640n
M3 - Article
C2 - 21612216
AN - SCOPUS:79959241252
SN - 0002-7863
VL - 133
SP - 9430
EP - 9440
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 24
ER -