Kalman-Filter-based particle tracking on parallel architectures at Hadron Colliders

G. Cerati, M. Tadel, F. Wurthwein, A. Yagil, S. Lantz, K. McDermott, D. Riley, P. Wittich, P. Elmer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors such as GPGPU, ARM and Intel MIC. To stay within the power density limits but still obtain Moore's Law performance/price gains, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High-Luminosity Large Hadron Collider (HL-LHC), for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques such as Cellular Automata or Hough Transforms. The most common track finding techniques in use today, however, are those based on the Kalman Filter. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. They are known to provide high physics performance, are robust, and are in use today at the LHC. We report on porting these algorithms to new parallel architectures. Our previous investigations showed that, using optimized data structures, track fitting with Kalman Filter can achieve large speedups both with Intel Xeon and Xeon Phi. We report here our progress towards an end-to-end track reconstruction algorithm fully exploiting vectorization and parallelization techniques in a realistic experimental environment.

Original languageEnglish (US)
Title of host publication2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781467398626
DOIs
StatePublished - Oct 3 2016
Event2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015 - San Diego, United States
Duration: Oct 31 2015Nov 7 2015

Publication series

Name2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015

Conference

Conference2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015
Country/TerritoryUnited States
CitySan Diego
Period10/31/1511/7/15

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Radiology Nuclear Medicine and imaging
  • Instrumentation

Fingerprint

Dive into the research topics of 'Kalman-Filter-based particle tracking on parallel architectures at Hadron Colliders'. Together they form a unique fingerprint.

Cite this